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ABSTRACT

We address a problem of separating drums from polyphonic music
containing various pitched instruments as well as drums. Nonneg-
ative matrix factorization (NMF) was successfully applied to spec-
trograms of music to learn basis vectors, followed by support vector
machine (SVM) to classify basis vectors into ones associated with
drums (rhythmic source) only and pitched instruments (harmonic
sources). Basis vectors associated with pitched instruments are used
to reconstruct drum-eliminated music. However, it is cumbersome to
construct a training set for pitched instruments since various instru-
ments are involved. In this paper, we propose a method which only
incorporates prior knowledge on drums, not requiring such training
sets of pitched instruments. To this end, we present nonnegative ma-
trix partial co-factorization (NMPCF) where the target matrix (spec-
trograms of music) and drum-only-matrix (collected from various
drums a priori) are simultaneously decomposed, sharing some factor
matrix partially, to force some portion of basis vectors to be associ-
ated with drums only. We develop a simple multiplicative algorithm
for NMPCF and show its usefulness empirically, with numerical ex-
periments on real-world music signals.

Index Terms— Drum source separation, matrix co-factorization,
music information processing, nonnegative matrix factorization

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a low-rank approxima-
tion method where a nonnegative input data matrix (target matrix)
is approximated as a product of two nonnegative factor matrices [7].
NMF has been used in various applications, including image pro-
cessing, brain computer interface, document clustering, collabora-
tive predictions, and so on. Recent advances in matrix factoriza-
tion methods suggest collective matrix factorization or matrix co-
factorization to incorporate side information, where several matri-
ces (target and side information matrices) are simultaneously decom-
posed, sharing some factor matrices. Matrix co-factorization meth-
ods have been developed to incorporate label information [15], link
information [16], and inter-subject variations [8]. Collective matrix
factorization [9] was studied to analyze multiple relational data ma-
trices. Co-factorization methods were extended to a 3-factor decom-
position. For instance, nonnegative matrix co-tri-factorization [14]
was proposed and successfully applied to solve a cold start problem
in collaborative prediction.

One of promising applications of NMF, which is addressed here,
is musical signal analysis such as music source separation [6, 13]
and music transcriptions [10, 1, 12]. We consider a problem of drum
source separation, the goal of which is to extract a rhythmic source

from polyphonic music consisting of multiple instruments as well
as vocals [17, 11, 5, 4]. One of main approaches to drum source
separation is to decompose the spectrograms (time-frequency rep-
resentation) of music signals into a product of two factor matrices
(one for basis matrix and the other for encoding matrix) using NMF,
in order to identify components related to drum only, which are used
to reconstruct drum-eliminated music signals. In such a case, some
prior knowledge on drum signals is required to identify which basis
vectors in NMF contribute to drum or other pitched instruments. Ba-
sis vectors learned using drum-only signals were used for initializa-
tion in decomposing the target matrix by NMF [3]. Some heuristics
were used to distinguish basis vectors involving drum from the ones
related to pitched instruments [2]. Support vector machine (SVM)
was used to classify basis vectors into drum-related ones and oth-
ers [5]. All these methods make use of prior knowledge on drum
implicitly in decomposing the target matrix using NMF.

Matrix co-factorizations can be served as a useful tool when
side information matrices (constructed from solo playing of musi-
cal source of interest) are available, in addition to the target matrix
to be factorized. In this paper we present nonnegative matrix partial
co-factorization (NMPCF) where we jointly decompose the target
matrix and a drum-only matrix1, forcing basis vectors involving the
drum-only matrix to be shared with the target matrix factorization
(see Fig 1). NMPCF makes use of drum-prior knowledge directly in
decomposing the target matrix, in contrast to most of existing meth-
ods where prior knowledge was implicitly used. Co-factorizing the
target matrix and the drum-only matrix leads shared basis vectors to
be associated with drum characteristics, so that learned factor ma-
trix is comprised of drum and and pitched instruments without any
post-processing by pre-trained classifiers. Shared basis vectors cor-
respond to drum and non-shared basis vectors are associated with
pitched instruments. We develop simple multiplicative updates for
NMPCF. Numerical experiments on real-world music confirm the
validity and high performance of NMPCF, compared to a state of the
arts (NMF+SVM).

2. NONNEGATIVE MATRIX FACTORIZATION FOR
DRUM SOURCE SEPARATION

NMF can be used to analyze the spectral and temporal characteris-
tics of sounds contained in a given spectrogram. If we denote the
magnitude spectrogram matrix as X , then each element Xft repre-
sents the magnitude of the spectrum of the f -th frequency bin at the

1The drum-only matrix is constructed by collecting various drum sounds
which are not used in the polyphonic music associated with the target matrix.



t-th time frame, which can be calculated by

Xft =

∣∣∣∣∣
N−1∑
n=0

st(n) exp−j 2π
N

fn

∣∣∣∣∣ ,

where st is the t-th windowed time domain signal. By applying
NMF on this nonnegative magnitude spectrogram matrix X as

X = UV >,

where U and V are also constrained to be nonnegative, the resulting
matrix U represents the frequency bases of the sources contained in
the signal, and the corresponding columns of V represent the activa-
tions of the frequency bases across the time. As a result, some of the
bases in U represent the drum sources, and the others represent the
remaining harmonic sources. If we can collect the frequency basis
vectors UD representing the drum sources and corresponding acti-
vation patterns V D , we can reconstruct the magnitude spectrogram
of the separated drum source XD as,

XD = UDV >
D.

However, the components representing drums are placed in arbi-
trary locations in U , so we have to distinguish which components are
representing drum sources. Prior knowledge about the drum sources,
such as non-harmonic frequency spectrums and rapid decaying time
domain activations, can be used. Several methods have been intro-
duced to identify the drum components from the extracted compo-
nents. [2] used a set of heuristics to identify drum components. [3]
used the known frequency characteristics of the drum sources to ini-
tialize a part of factor matrix, to explicitly set the position of the
drum components UD in the factor matrix U . [5] used an SVM
classifier, which is trained by using a variety of spectral and temporal
features of the extracted components from two drums and harmonic
sources, to distinguish frequency bases of drums.

In the existing methods, the prior knowledge is only implic-
itly used in the separation process. If we use the prior knowledge
in the initializations [3], there is no guarantee that the initialized
part remains as the drum part after the decomposition process us-
ing NMF. In the case of using heuristics [2], the prior knowledge
does not involve in the decomposition process, so we cannot sure
that NMF actually separate the drum part and the harmonic part.
NMF+SVM [5] also does not use the knowledge in the decomposi-
tions, and moreover, it requires additional burden to build the clas-
sifier, with expensive preparation of training data consists of various
kinds of harmonic sources, as well as the prior drum sources. Also it
is possible that the performance of separation is degraded by both the
classification error of SVM and separation error of NMF. As a rem-
edy for these problems, we propose a co-factorization based method
which uses the prior knowledge explicitly in the decomposition pro-
cess, and requires no additional heuristics or classifiers to distinguish
drum bases.

3. NONNEGATIVE MATRIX PARTIAL
CO-FACTORIZATION

Nonnegative Matrix Partial Co-Factorization (NMPCF) is developed
for the separation of drum sounds from input music signal. NMPCF
uses a decomposition model which explicitly distinguish the drum
part and the harmonic part from a mixture as follows,

X = UDV >
D + UHV >

H , (1)
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Fig. 1. A pictorial illustration of NMPCF model. A part of factor
matrix UD in the factorization of the target signal spectrogram is
shared in the factorizations of the prior signal spectrograms.

where UD and V D represent the frequency and time characteristics
of the drum sources, respectively, and UH and V H represent the
frequency and time characteristics of the harmonic sources. All the
matrices UD , V D , UH and V H are constrained to be nonnegative.
Although we explicitly designate the drum bases UD and harmonic
bases UH in this model, we do not have a way to automatically dis-
criminate them. Therefore we exploit an additional prior knowledge
which consists of the spectrogram of the drum-only signal Y . Since
the additional knowledge contains only the sound of drums, it can be
decomposed into

Y = UDW>
D, (2)

where UD can be treated as the same matrix in the model (1), and
W D represents the time domain activations of each column of UD

in Y . The most straight-forward way to use this additional knowl-
edge is to decompose Y to obtain UD , then use it in the model
(1) as initial values of UD [3]. However, this kind of initialization
approach does not guarantee that the initialized part remains to rep-
resent drum part after the decomposition process.

Instead of the simple initialization method, we propose a par-
tial co-factorization method which shares the frequency basis matrix
UD to factorize the input signal X and the prior signal Y (Fig. 1).
If we jointly factorize the matrix X with Y , the frequency char-
acteristics of drums are collected in the matrix UD , while UH is
trained to represent the remaining part of the input music source sig-
nal X , which is supposed to be the harmonic part of the music. The
objective function of NMPCF can be constructed to minimize the
residuals of the models (1) and (2), which becomes

L =
1

2
‖X −UDV >

D −UHV >
H‖2F +

λ

2
‖Y −UDW>

D‖2F , (3)

where λ is the parameter adjusting the relative importance between
the input data and drum prior.

If we can decompose the gradient of above objective function
∂L
∂U

as follows,

∂L
∂U

=

[
∂L
∂U

]+

−
[

∂L
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]−
,

where
[

∂L
∂U

]+

> 0 and
[

∂L
∂U

]−
> 0, then we can build the multi-

plicative update rules as

U ← U ¯

[
∂L
∂U

]−
[

∂L
∂U

]+ .



This multiplicative update rule has a stationary point at the local min-
imum, and does not break the nonnegativity constraint for the matrix
U .

From the objective function (3), we can calculate the gradient
for each matrix to be updated as follows,

∂L
∂UD

= −XV D + UDV >
DV D + UHV >

HV D

−λY W D + λUDW>
DW D,

∂L
∂V D

= −X>UD + V DU>
DUD + V HU>

HUD,

∂L
∂UH

= −XV H + UHV >
HV H + UDV >

DV H ,

∂L
∂V H

= −X>UH + V HU>
HUH + V DU>

DUH ,

∂L
∂W D

= −Y >UD + W DU>
DUD,

and the multiplicative update rule becomes

UD ← UD ¯ XV D + λY W D

UDV >
DV D + UHV >

HV D + λUDW>
DW D

,

(4)

V D ← V D ¯ X>UD

V DU>
DUD + V HU>

HUD

, (5)

UH ← UH ¯ XV H

UHV >
HV H + UDV >

DV H

, (6)

V H ← V H ¯ X>UH

V HU>
HUH + V DU>

DUH

, (7)

W D ← W D ¯ Y >UD

W DU>
DUD

. (8)

The convergence of the above multiplicative update rules can be
shown by using the auxiliary function method similar to the method
used in [7]. In fact, the update algorithm for V D , UH , V H

and W D is essentially equal to the algorithm for the standard
NMF algorithm, because these factor matrices are not shared in
co-factorization model. For the update rule of UD , we can generate
an auxiliary function as the sum of the auxiliary functions used
in [7], then the new auxiliary function also satisfies the positive
semi-definiteness condition and the convergence can be proved in
the same way.

By iteratively updating the matrices, we can find the basis matrix
for the drum sound UD and the corresponding time activations V D

without further processing. The overall process of the drum source
separation using NMPCF algorithm is summarized below.

Algorithm outline: Drum source separation using NMPCF

1. Prepare the spectrogram of the target music signal X
and the spectrogram of the prior drum signal Y
Initialize factor matrices with random positive values.

2. Iterate

(a) Update each factor matrix using (4) .. (8)

3. Reconstruct the separated signals

(a) Compute the inverse of the spectrogram
XD = UDV >

D to obtain drum signal
(b) Compute the inverse of the spectrogram

XH = UHV >
H to obtain harmonic signal

4. NUMERICAL EXPERIMENTS

We tested the proposed NMPCF algorithm for drum source separa-
tion problems. We used 10 commercial popular music songs, each
of which is 100 seconds-long, as targets for the separation tasks. A
drum track and a harmony track compound each of these songs by
instantaneous addition. We segmented the song into 10-second ex-
cerpts, and used those 10 excerpts for the experiments. On the other
hand, we built the prior drum signals from another 13 popular songs
which consist of only drum sounds. We picked a 10 seconds ex-
cerpt from each prior drum signal, and concatenated them to make
a prior drum signal with the length of 130 seconds. All the songs
have sampling rate of 44,100 Hz with 16 bit encoding, and we used
the window which has the length of 2048 samples (approximately
50 ms) sliding by the length of 256 samples.

For the measure of separation quality, we used the signal-to-
noise ratio (SNR) which compares the original signals with the resid-
ual of original and separated signals, like,

SNR = 10 log10

∑
s(n)2

(
∑

s(n)− s̃(n))2
,

where s(n) is the original signal and s̃(n) is the separated signal.
Using drum track and harmony track of the test songs as original
signals, we measured the SNRs for the separated drum and harmonic
sound signals.

The parameters of the NMPCF algorithm are the number of
components used for the drums, the number of components used
for the harmonic sounds, and the weight parameter λ. In addition to
this, the maximum number of iterations can be specified to control
the length of the learning time.

For the number of components, we tested several sets of the
numbers in the separation tasks to decide the appropriate numbers.
Usually, the number of components required for the drums are less
than that for the harmonic signals. The number 70 for the drum
sources and 100 for the harmonic sources showed good performance,
so we used the numbers for all test songs.

To determine the value of parameter λ which decides the rel-
ative importance between input signal and prior signal, we ran the
separation with several different numbers of λ. The value should
balance the difference of the length of target signal and drum prior
signal. In our case, the ratio between the target signal and prior
signal is R = 10/130, so the numbers around these values were
tested. The optimal value depends on the target songs, but we chose
R× 0.1 ≈ 0.0077 as λ value which usually worked well.

To decide the number of iterations, we checked the SNR value
of the separation at each iteration step. Although the value of the
objective function converges relatively slowly, the SNR of separation
reaches the maximum value in a few iterations. The number 20 of
iterations are enough to obtain the good separation results.

We ran the NMPCF algorithm to separate the target songs with
the parameter values above. As a baseline of the separation perfor-
mance, we also implemented an NMF+SVM method and ran it for
the same dataset. Table 1 shows the SNR result of the separated
drum part and the SNR result of the separated harmonic part. The
separation performance of the excerpts from the same song is usually
quite similar, so we averaged SNR results over the excerpts. The per-
formance depended on the target song, but NMPCF usually worked
better than NMF+SVM. Some of the results of the NMF+SVM were
very low, possibly because of the failure in the decomposition in
NMF or in classification process. However, NMPCF showed better
or almost comparable results to NMF+SVM.



Table 1. SNR of separation results measured for the 10 popular mu-
sic songs using NMF+SVM and NMPCF. Each SNR value is the
average over 10 segments of the corresponding song. For each seg-
ment, we ran the algorithm 5 times and take the mean of the SNR
results.

Song
SNR (Drums) SNR (Harmonic)

NMF+SVM NMPCF NMF+SVM NMPCF
1 8.02 8.84 8.43 7.95
2 4.58 5.48 3.49 4.66
3 4.29 5.04 4.69 5.98
4 3.62 3.01 5.14 4.21
5 5.56 5.20 6.17 6.47
6 4.82 6.90 1.35 5.40
7 3.87 3.94 7.08 6.68
8 -0.68 2.76 3.91 6.36
9 4.19 4.32 7.30 7.04
10 7.90 7.81 8.41 8.08

mean 4.62 5.33 5.60 6.28

5. CONCLUSIONS

We proposed the NMPCF model which shares some part of the factor
matrix with the factor matrix of the prior knowledge. Simple multi-
plicative update algorithm was derived for the model. The resulting
shared factor matrix automatically contains the frequency character-
istics of drum source signals, so we could separate the drum parts
and harmonic parts without further manipulations. Numerical ex-
periments on the real world music signals showed that the proposed
algorithm worked better than the existing NMF+SVM method on
average.
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