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ABSTRACT

This paper presents an adaptive prediction method about source-specific ranges of binaural cues, such as
inter-channel level difference (ILD) and inter-channel phase difference (IPD), for centrally positioned singing
voice separation. To this end, we employ Gaussian mixture model (GMM) to cluster underlying distributions
in the feature domain of mixture signal. By regarding responsibilities to those distinct Gaussians as unmixing
coefficients of each mixture spectrogram sample, the proposed method can reduce artificial deformations that
previous center channel extraction methods usually suffer, caused by their imprecise or rough decision about
ranges of central subspaces. Experiments on commercial music show superiority of the proposed method.

1. INTRODUCTION
Singing voice separation (SVS) or vocal source sep-

aration, which aims to separate lead singer’s playing
from music, draws much attention in various research
fields and applications. First of all, in music information
retrieval (MIR) area, well-separated vocal sources can
be utilized in some important tasks, such as automatic
singer identification [1] and main melody extraction [2].

Another important application of SVS can be found in
the Karaoke market. We expect that a decent SVS
method will let users cheaply enjoy their Karaoke ser-
vices with better sound quality than the traditional MIDI-
based ones. Furthermore, object-based audio services
and their standard [3] further allow users not only to take
away singing voice, but to control the other instruments.
To this end, they also require music to be separated well
in advance.

There have been two different approaches to separating
singing voices: monophonic ans stereophonic methods.
In the monophonic methods, tracking a dominant melody
from multiple pitches plays great role in effective sepa-
ration of vocal sources. For instance, a method of mask-
ing salient pitches showed promising results combined
with reconstruction of the other instruments using binary
weighted nonnegative matrix factorization (NMF) [5]. A
more sophisticated estimation of the main melody was
made with source-filter model along with matrix decom-
position concepts as well [6].

One the other hand, stereophonic methods mainly rely
on the assumption that main singers’ voices are usually
positioned at the central subspace; both of their chan-
nels are more similar than the other surround instruments
are. The distinction between center and surround chan-
nels can be made by binaural cues, such as inter-channel
intensity difference (IID), inter-channel phase difference
(IPD), and inter-channel coherence (ICC). Azimuth dis-
crimination and resynthesis (ADress) is one important
technique that finds out a sound source which has a par-
ticular IID value [7]. While ADress provides acceptable
separation performance in various recordings, it still suf-
fers musical noise which is cause by itshard decision
manner. A post-processing method, based on indepen-
dent component analysis (ICA), was introduced to en-
hance the ADress results [8].

In this paper, we propose an alternative clustering
scheme based on Gaussian mixture model (GMM) [9].
The GMM on binaural cues, inter-channel level differ-
ence (ILD) and IPD in this case, produces responsibili-
ties of each sample to the center subspace, and ends up
allowing the concept ofsoft decisionto the mixture sam-
ples that do not totally belong to one specific source (we
use the term ILD for log-energy difference as defined in
(5) to distinguish it from IID as an amplitude discrimina-
tion in [7]).

This paper consists of following sections. Section 2 de-
scribes problems that can be caused by improper decision
mechanism. Section 3 provides details about the pro-
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posed separation method using GMM on binaural cues.
Section 4 shows empirical assessment of the proposed
soft decision method on real-world commercial music.
Finally, Section 5 concludes the work.

2. SOFT VS HARD DECISION
Separating theci th channel of jth target sourceS(ci)

j
from ci th channel of a short-time Fourier transformed
(STFT) stereophonic mixtureX(ci) can be represented as
an element-wise weighting process like,

S(ci)
j (t, f ) =Wj(t, f )X(ci )(t, f ), for 0≤Wj(t, f )≤ 1, (1)

whereci indicates each channel,c = [1,2]⊤ in stereo-
phonic case,t and f respectively designate a specific
frame and frequency bin. Equation (1) covers instanta-
neous mixing environments where all unmixing coeffi-
cientsWj(t, f ) are the same with differentt and f indices.
Furthermore, (1) can also model more complicated mix-
ing environments with the nonlinear filtering, by consid-
ering eachWj(t, f ) has a distinct value.

Even in the instantaneous mixture case, hard decision
can cause problems with inappropriate prediction. For
instance, after the decision is made based on a certain
criteriaα j in the feature domain like,

Ŝ(ci)
j (t, f ) =

{

X(ci)(t, f ), if
∣

∣

∣
Φ
(

X(c)(t, f )
)∣

∣

∣
≤ α j

0, otherwise
,

(2)

a sample point ofci th channel of reconstructed source

Ŝ(ci)
j (t, f ) is copied from the mixture sample as is or has

zero value. Note that feature transform functionΦ(·)
takes all two channels of the mixture signal,X(c)(t, f ) =
[

X(1)(t, f ),X(2)(t, f )
]⊤

, in the stereophonic case. Sup-

pose that the true unmixing coefficient forjth source,
Wj(t, f ) is less than 1. At the same time, if the sample
point is decided as the target source based on the hard
decision manner, unnecessary part of interfering sources
(1−Wj(t, f ))X(ci )(t, f ) will be also extracted. Other-
wise, some part of the target sourceWj(t, f )X(ci )(t, f )

will be omitted in the reconstructed sourceŜ(ci)
j (t, f ).

Our goal is to provide a soft decision mechanism, where
each unmixing coefficientWj(t, f ) is estimated to have
a soft real number from 0 to 1, instead the two inte-
gers, 0 or 1. Similarly to (2), the reconstruction can be

made from the weighting process using the delicately es-
timated unmixing coefficient̂Wj(t, f ), like

Ŝ(c)j (t, f ) = Ŵj(t, f )X(c)(t, f ). (3)

We propose a GMM-based clustering technique in Sec-
tion 3, where probabilities that each sample belongs to
the Gaussian distributions are regarded as unmixing co-
efficients for the sources. Consequently, the goal of our
soft decision mechanism is to get less separation error
than hard decision, like

∑
t, f ,i

∣

∣

∣

∣
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)
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∣
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2
,

whereC j means the cluster consists of samples that are
classified into thejth target source. The two terms of
the right hand side represent errors caused by interfering
sources and loss of the target source during the recon-
struction process, respectively.

In most of previous methods, for example ADress [7], a
range parameterα j is certainly exploited to tacklefre-
quency azimuth smearing, which occurs when there are
harmonic overlaps in a given frequency. Although the
azimuth subspace width, which ADress provides as a
range parameterα j , helps robust estimation of the az-
imuth values of sources, it is true that wider range of
α j does not guarantee to avoid problems of hard deci-
sion. Instead, widerα j can increase error from interfer-
ing sources,∑(t, f )∈C j ,i |(1−Wj(t, f ))X(ci )(t, f )|2 in (4).

Fig. 1 depicts the problems that hard decision can cause.
We set a specific criteriaα j on ILD and IPD values, and
then collect spectrogram samples that lie in the crite-
ria like in (2). To see the effect of hard decision more
clearly, the decision was made not on the mixture spec-
trogram, but on each of the two sources, singing voice
and summed harmonic instruments. Ifα j is wide enough
to cover all spectrogram samples of vocal source, the re-
constructed spectrogram Fig. 1(a) should be the same
with the original one in Fig. 1(b). However, there are se-
rious discontinuous regions marked with arrows, where
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(a) (b)

(c) (d)

Fig. 1: Spectrograms of hard decision results on vo-
cal and harmony sources. Loss of vocal harmonics are
marked with arrows. (a) Hard decision results on vo-
cal source. (b) Original vocal source. (c) Hard decision
results on mixture of harmony sources. (d) Mixture of
original harmony sources.

some spectrogram samples of vocal source are misclassi-
fied into surround channel group. Another kind of distor-
tion is that minute stereophonic effects of singing voice
which might be artificially added in studio cannot be cap-
tured well, because they are more likely to spread widely
in stereophonic sound field. We can see that the origi-
nal noise floor between the harmonic crests in Fig. 1(b)
is not fully reconstructed in Fig. 1(a). Furthermore, the
same value ofα j also produces interfering musical noise
in Fig. 1(c), which are incorrectly involved spectrogram
samples from the summed surround sources in Fig. 1(d).
In practice, the hard decision-based separation on mix-
ture spectrograms in real world separation tasks, spec-
trograms in Fig. 1(a) and Fig. 1(c) are summed up to
reconstruct centered singing voice. Therefore, the re-
constructed signals usually suffer irregular loss of vo-
cal sources and irritating peaks from surround harmony
sources.

3. CENTERED SOURCE SEPARATION USING
GMM ON BINAURAL CUES
The proposed GMM-based clustering is carried out in

the feature domain,Φ(X(c)(t, f )). We adopt two widely

(a)

(b)

Fig. 2: Histograms of feature vectors from (a) a centered
singing voice source (b) a mixture of surround instru-
ments.

known inter-channel difference measures, ILD and IPD,
to compound a feature vector,

Φ
(

X(c)(t, f )
)

=







10log10

∣

∣X(1)(t, f )
∣

∣

2

∣

∣X(2)(t, f )
∣

∣

2

∠

(

X(1)(t, f )X(2)∗(t, f )
)






, (5)

where each element represents ILD and IPD between the
two channels of mixture spectrogram.

Fig. 2 provides pictorial examples of two distributions
each of which is from a centered vocal source and sum
of the other harmonic sources, respectively. Suppose

thatS(c)1 (t, f ) is two-channeled spectrograms of centered
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Table 1: GMM-based centered source separation procedure from a stereo mixture.

1. Initialize parameters

(a) PrepareS(c)v (t, f ) andS(c)h (t, f ), which are spectrograms of stereophonic vocal and harmony source signals
for training, respectively

(b) Calculate binaural cuesΦ(S(c)v (t, f )) andΦ(S(c)h (t, f )) of training signals

(c) Calculate means and covariances of training feature vectors,µv, µh, Σv, Σh.

i. If 1. (a) to (b) were done, initializeµ1, µ2, Σ1, Σ1 with µv, µh, Σv, Σh.

ii. Otherwise, initialize them with random values.

(d) Initialize mixing parametersp( j) with equal probabilities, 0.5.

2. Prepare input samples for GMM

(a) Calculate binaural cuesx(t−1)F+ f := Φ(X(c)(t, f )) of stereophonic mixture signal

3. EM for GMM learning (repeat until convergence)

(a) E-step: compute responsibilities for all componentsj and samplesxn

r jn = p(xn| j)p( j)

∑M
j=1 p(xn| j)p( j)

(b) M-step: update parameters:

µnew
j =

∑n r jnxn

∑n r jn

Σnew=
∑n r jn(xn−µnew

j )(xn−µnew
j )⊤

∑n r jn

pnew( j) = 1
N ∑n r jn

4. Reconstructjth source by substitutinĝWj(t, f ) in (3) with r j ,(t−1)F+ f

singing voice andS(c)2 (t, f ) is that of summed surround
instrumental sources. Fig. 2(a) is a histogram of feature

vectorsΦ
(

S(c)1 (t, f )
)

from overall spectrogram samples

of the vocal source,S(c)1 (t, f ). Compared with the dis-

tribution of Φ
(

S(c)2 (t, f )
)

in Fig. 2(b), ILD and IPD val-
ues of singing voice construct way narrower multivariate
Gaussian-like sample distribution. Therefore, the vari-
ances of the two distributions can be reasonable criteria
for separating sourcesS(c)1 (t, f ) andS(c)2 (t, f ).

GMM aims at clustering each spectrogram sample based
on two learned Gaussian distributions. That means that
the binaural cues of the mixture signal consist a mixture
distribution of two Gaussians which differ in their means
or variances. Therefore, a certain kind of ordinary GMM
learning results,responsibility, can be eventually used as
unmixing coefficientsŴj(t, f ). For instance, a sample

whose ILD and IPD values are close to the mean of a
specific Gaussian is more likely to belong to it. In the
case of Fig. 2, where means of two distributions are very
similar, the distance to the common mean can also play a
great role when GMM identifies responsibility: it is more
possible that another sample whose ILD and IPD values
are far from the common mean will be allocated to the
Gaussian distribution with bigger variance in Fig. 2(b).

Table 1 summarizes the overall procedure for centered
source separation using GMM on binaural cues. Note
that this procedure can be easily expanded to the cases
where spatial distributions of more than two sources are
known. In addition, if the initialization was made with
random values (1.(c) ii), it is necessary to identify which
j is the index for the target source.
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Table 2: Separation performances of hard decision with various ranges and GMM-based methods.

Song
Hard decision W/O GMM GMM

Narrow Optimal Wide Soft Hard Random (soft)
1 2.29 6.35 5.43 6.70 6.95 6.66
2 1.68 4.59 3.46 5.43 4.84 5.44
3 1.82 6.42 5.54 6.54 6.34 6.52
4 1.81 4.30 3.34 5.86 5.19 5.89
5 1.52 5.35 4.49 7.17 6.59 7.18
6 0.64 3.52 4.32 4.72 4.24 4.67
7 1.63 3.78 2.19 4.88 4.22 4.89
8 0.26 0.96 0.36 3.37 1.92 3.41
9 2.04 7.68 7.25 7.20 7.99 7.15

10 0.66 3.36 2.41 4.26 3.84 4.23
Average 1.44 4.63 3.88 5.61 5.21 5.60

4. EXPERIMENTAL RESULTS

We use 10 seconds-long excerpts of 10 commercially re-
leased Korean pop songs for test signals. Also, we use
13 other songs for training. All of them are stereophonic
PCM wave signals with 44.1kHz sampling rate and 16bit
encoding. Before the centered singing voice separation,
drum sources were taken away using nonnegative matrix
parcial co-factorization (NMPCF) algorithm as proposed
in [10] [11]. Being windowed with sine squared func-
tion, 4096 samples of the signals are short-time Fourier
transformed with 50% overlap. To assess the separation
quality, we adopt signal-to-distortion ratio defined by,

SDR :=
1
C ∑

ci

10log10
∑t s(ci)(t)2

∑t(s(ci )(t)− ŝ(ci)(t))2
. (6)

Equation (6) can be viewed as the same definition in [12]
without allowing any possible deformation of the source,
since the secured source signals are artificially filtered
ones, right before the mixing process. On top of that, our
goal is to separate out not only clean vocal signals, but
all of their stereophonic sound effects. All of the training
and test signals went through high pass filtering to cut off
unnecessary low frequency parts under 140Hz.

For the hard decision tests, we empirically picked up the
optimalα j among various ILD and IPD ranges, namely
∣

∣ILD
∣

∣< 0.04dB or
∣

∣IPD
∣

∣ < 20◦.

GMMs are individually learned for two subbands, un-
der and over 8kHz. Therefore, the separation procedure

in Table 2 is executed twice. Finer subband resolutions
were not satisfying since the number of samples in each
subband is not big enough to learn GMMs well. For the
case of random initialization, resulting clusters are man-
ually ordered by regarding the ones with smaller vari-
ances as the target source.

Table 2 shows separation performances. First of all,
we can compare the optimal combination of the range
parameter with exemplar narrower and wider ones,
(0.01dB, 3◦) and (0.32dB, 42◦), respectively. Although
the optimal combination provides the best results among
the three, it is impossible in practice to know the optimal
one a priori. Contrarily, the soft decision methods we
proposed perform better than every hard decision case
even in the case of random initialization. Besides, the
good results with random initialization are also mean-
ingful for us because they support the idea that there are
two underlying Gaussians in feature domain of mixture
music. With the learned GMMs, we can also choose not
to use soft responsibilities; if we round off them to have
0 or 1, we can get hard decision results based on GMM.
Although adopting hard decision after GMM degrades
separation performances, it is still better than the ordi-
nary hard decision method without GMM.

Fig. 3 further supports superiority of the proposed
method. We can check that temporal discontinuity and
peaky cells in the reconstructed spectrogram of singing
voice, Fig. 3(a), disappear significantly in Fig. 3(b), that
of reconstruction with soft decision. Compare them with
the original source in Fig. 1(b).

AES 43RD INTERNATIONAL CONFERENCE, Pohang, Korea, 2011 September 29–October 1

Page 5 of 6



Kim et al. GMM for SVS from Stereo Music

(a) (b)

Fig. 3: Spectrograms of the reconstructed centered
singing voice in song 7. (a) Spectrogram of the hard de-
cision result without GMM. (b) Spectrogram of the soft
decision result using GMM.

5. CONCLUSION
A delicate centered source separation method was intro-
duced. Based on the assumption that the target source
has a specific position in stereophonic sound field, such
as centered singing voice, binaural cues of input mix-
ture signals were clustered using GMM. Experimental
results on the real-world commercial music showed im-
provement upon the ordinary hard decision method in
separation performance. Also, we expect that the rela-
tively lower complexity of the proposed method than that
of complicated vocal source separation methods [6][8]
can be an advantage when we implement a lightweight
Karaoke application for hand-held devices while retain-
ing acceptable separation quality.
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