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Abstract 
High-level cognition is often accomplished not by 
individuals working in isolation, but by distributed, complex 
cognitive systems. Examples include teams of scientists or 
collaboratively improvising musicians. These distributed 
systems can undergo critical transitions, suddenly moving 
from one stable pattern of activity to another. For instance, 
in ‘free jazz,’ where musicians improvise without a 
predetermined plan or a central leader, the performance will 
often settle into a particular texture or style before 
transitioning to something entirely new, often quite 
suddenly. When do these transitions occur? Are they 
foreseeable? Inspired by suggestions that cognitive systems 
are, in some sense, a kind of ‘ecosystem,’ we draw on recent 
work in quantitative ecology that has begun to describe 
generic early warning signals of impending critical 
transitions in ecosystems. We apply these techniques to a 
corpus of audio recordings of professional jazz quartets 
playing improvised music. We find that the same generic 
measures that have been used successfully to predict critical 
transitions in natural ecosystems describe the complex 
dynamics of improvised musical performance in the lead-up 
to transitions. By taking seriously the metaphor that 
cognition occurs in ‘ecosystems,’ we gain new insights into 
how stable patterns of thought can emerge suddenly in 
complex cognitive systems.  
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Introduction 
A massive team of scientists, entangled with highly advanced 
instruments, make a breakthrough discovery in particle physics. 
Sailors on a navy vessel creatively reconfigure the way they track 
the ship’s location (Hutchins, 1995). Improvising musicians 
explore one particular musical texture before suddenly 
transitioning to a new style or sound. In each of these examples, 
expert reasoning is accomplished not by individuals working in 
isolation, but by the whole distributed, complex system. Such 
distributed cognitive systems can undergo critical transitions —  

 
 
sudden transformations from one stable pattern of activity to 
another. But when? Are these transitions foreseeable? 

Consider two examples. First, Hutchins (1995) describes how 
sailors on a large navy ship were forced to improvise when the 
ship suddenly experienced a catastrophic loss of power. The 
typical procedure for tracking the ship’s location relied on 
instruments that were no longer operational. The entire distributed 
system of sailors and instruments first stabilized around one 
procedure for locating the ship on a map; after it became apparent 
that this procedure was incorrect, the entire system reconfigured 
quite suddenly into a new distributed procedure.  

As a second example, consider ‘free jazz’ musicians who 
create new improvised music without a score, a central leader, 
or explicit advance planning. Free jazz often exhibits 
unexpected transitions between qualitatively different musical 
textures characterized by stable rhythmic, melodic, or sonic 
frameworks — which we will call ‘soundworlds.’ After 
exploring a soundworld for some time, a jazz ensemble may 
transition to an entirely new soundworld, often quite suddenly, 
without apparent warning. These critical transitions between 
soundworlds appear to reflect the emergence of a new stable 
regime within the distributed system of musicians.  

Both these examples illustrate how distributed cognitive 
systems can suddenly transition from one stable regime to 
another — resulting in entirely novel cognitive procedures or 
products. While the existence of these critical transitions is well 
known, we know little about why and when these transitions 
occur.  

An ecosystems perspective 
Distributed cognitive systems often involve a heterogeneous 

mix of agents that interact across space and time. Inspired by 
this, a number of authors have proposed that we adopt an 
‘ecological’ perspective on distributed cognitive systems 
(Bateson, 1972; Gibson, 1986; Hutchins, 2010). This analogy 
between cognitive systems and ecosystems has largely 
remained at the level of an evocative image. Over the last 
decade, however, ecologists have begun to develop 
mathematical tools for analyzing, and perhaps even predicting, 
critical transitions in natural ecosystems.  
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While many natural ecosystems exhibit considerable 
resilience, maintaining a stable regime of activity in the face of 
outside perturbations, they can sometimes transition suddenly 
to an entirely different regime. A fish population may collapse 
suddenly, or a lush ecosystem may experience sudden 
desertification. These ‘tipping points’ can seem to appear from 
nowhere, but ecologists have recently begun to develop early 
warning signals (EWS) of impending critical transitions 
(Sheffer et al, 2009; van Belzen et al 2017; Dakos et al, 2012; 
Wang et al, 2012).  

In particular, many critical transitions are preceded by a 
period in which the ecosystem becomes increasingly sensitive 
to perturbations. In response to some outside ‘push,’ a resilient 
ecosystem will eventually return to a stable state — but in 
systems that are susceptible to a critical transition, this process 
of restabilization will take longer and longer. This decrease in 
the rate-of-return is known as critical slowing down (Fig 1B). 
Ecologists have identified a number of indices that an 
ecosystem is undergoing critical slowing, including two that we 
will deploy here: increased variability, and increased lagged 
autocorrelation (Fig 1B).    

From forest ecosystems to cognitive ecosystems 
Can we gain traction on critical transitions in distributed 

cognitive systems by taking seriously the metaphor that 
distributed cognitive systems are a kind of ‘ecosystem’? There 
are reasons to hesitate. The complex systems that accomplish 
human cognition often differ in critical ways from the 
ecological systems for which these generic early warning 
signals were first developed. Distributed cognitive systems 
often involve a large number of distinct roles  — think of the 
proliferation of precise roles on a navy battleship, or dozen or 
more musical parts in a piece of modern orchestra music. 
Cognitive systems can also be highly heterogeneous, 
combining highly specialized humans with a variety of 
technologies, tools, and practices. And cognitive systems 
operate on multiple timescales, some of which on multiple 
timescales that are of less importance in natural ecosystems; in 
addition to evolution and moment-to-moment interaction, 
cognitive systems often have a cultural history. Jazz musicians, 
for instance, spend years acquiring a set of shared intuitions and 
practices. 

 To investigate whether early warning signals of critical 
transitions in natural ecosystems might also predict transitions 
in expert cognitive systems, we focused on a system that 
exemplifies many of the most rarified and unusual features of 
human cognitive activity: ensemble free jazz performance. Free 
jazz performance involves multiple humans in hyper-
specialized roles, using a range of technologies (i.e., 
instruments), with skills honed over a lifetime, to create new 
music without an organizing score. The collective activity of 
this distributed system creates entirely novel musical products.  

In the current study, using a corpus of audio recordings of 
professional jazz musicians, we quantify the amount of critical 
slowing down in the periods leading up to improvised 
transitions. If this class of distributed cognitive systems 
behaves similarly to natural ecosystems, then critical slowing 
down should increase systematically in the lead-up to a critical 
transition. 
 

Methods 

Corpus of free jazz recordings 
The corpus consisted of single-track audio recordings of 

improvised free jazz music (~ 20 minutes), taken from two 
recording sessions in a professional recording studio. Both 
sessions featured a professional jazz quartet consisting of 
saxophone, guitar, bass and drums. Although the tracks were 
recorded on separate occasions, they feature the same 
musicians except for the saxophonist. 

The first piece (length: 16m12s) was entirely ‘free’ 
improvised, making no use of pre-composed material and with 
no explicitly stated preconceptions about what was supposed to 
happen.  

The second piece (length: 2m54s) included some composed 
material, interleaved with periods of free improvisation. 
Transitions between improvised and composed sections were 
determined collectively in the moment, so we consider these to 
be improvised. The timing of transitions between composed 
and improvised material were determined explicitly by the 
score, so we consider these to be composed. 

Identifying critical transitions 
From the audio recording, a professional musician coded the 

onset of transitions between soundworlds. Two critieria were 
used to identify critical musical transitions: (1) transitions 
needed to demarcate qualitatively different musical textures or 
styles, and (2) transitions needed to involve a coordinated 
change in playing from two or more individuals. The coder 
identified twelve transitions: 8 improvised and 4 composed. 
Only improvised transitions were included in our analysis.  

Analysis 
The audio recordings were transformed into a multi-

dimensional time series using Mel-Frequency Cepstrum 
Coefficients (MFCC), which have been widely used in speech 
recognition and music classification (Rabiner et al, 1993; 
Tzanetakis et al, 2002). The typical procedure to calculate 
MFCCs is to (a) apply a sliding window to a short period of the 
signal, (b) transform the windowed signal to the frequency 
domain by using Discrete Fourier Transform, (c) take the log of 
the power of the spectrum, (d) convert the linearly spaced 
frequencies into the mel scale, (e) apply Discrete Cosine 
Transform, (f) move on to the next frame. MFCCs provide a 
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spectral analysis whose small number of coefficients (usually 
13) contains a compressed version of the full Fourier spectral 
analysis results.  On top of that, this compact representation is 
more suitable than the original time domain signal with 
redundantly high temporal resolution. To further reduce the 
dimensionality of our data, each dimension of the MFCC time 
series was normalized before performing Principal Component 
Analysis. For simplicity, we used only the first four PCA 
components (Fig1, top).  

From this four-dimensional time series representation of the 
musical performance, we computed two indices of critical 
slowing down: variability and lag-1 autocorrelation. Each was 
computed in a sliding window (17.5s), with a stepsize between 
windows of 0.02 seconds. Variability was computed as the 
distance between all points in a given window, and 
autocorrelation was computed as the mean lag-1 autocorrelation 
for each of the 4 components. This produced two time series of 
potential early warning signals; one for variability, and one for 
autocorrelation (Fig2, bottom).  
 

 
Figure 1. Audio recordings were transformed into a 
multidimensional feature representation, which was used to 
calculate putative early warning signals of critical transitions. 
(Top) Each single-track audio recording was transformed into 
a multidimensional feature representation (MFCC), then 
reduced to the first four principal components (colored lines). 
When performers transition from one soundworld to another 
(vertical rectangle), the performance should move to a new 
region of this 4-dimensional state space. (Bottom) From this 4-
d representation of the audio, we calculated two putative early 
signals:  variability and lagged autocorrelation. These were 
computed within a sliding window (length = 17.5 seconds), 
illustrated by the horizontal arrow in the top panel. In this toy 
example, both variability and lagged autocorrelation increase 
monotonically in the lead up to the critical transition. 

 
Critical slowing down is indexed by a systematic increase in 

variability and lagged autocorrelation. We thus examined the 
rate of change in these early warning signals over the course of 
the entire performance, in a sliding window of length 35s and 
stepsize 0.02s. To quantify the rate of change within these 
windows we used Kendall’s tau to measure the correlation 
between the early warning signal and time. More positive 
values of tau indicate greater monotonic increase. A system 
undergoing critical slowing down during a particular time 
period (e.g., leading up to a musical transition) should thus 
have a positive value of tau for this period. 

Results 

Soundworlds: sub-regions of musical state space? 
We first verified that the multidimensional feature 

representation of the audio allowed us to distinguish between 
listener-perceived soundworlds. We thus investigated whether 
distinct soundworlds inhabited distinct (though perhaps 
overlapping) regions of the multidimensional feature space. A 
soundworld that consists of entirely the same sound played over 
and over should exist within a small region of the 
multidimensional feature space; conversely, moments from two 
very different soundworlds should be far apart in the feature 
space. Following this logic, for each soundworld, we found the 
subset of points that fully enclosed all points in the entire 
soundworld (i.e., the convex hull) and calculated the volume of 
this region. We then compared the size of each soundworld-
region to the size of equally-sized random samples from the 
entire performance (n = 100 random samples per soundworld).  

Each improvised soundworld inhabited smaller regions than 
expected by chance (every p < .01). Thus, our multi-
dimensional feature space captured the subjective judgments of 
the listener, correctly placing moments from within a 
soundworld closer together than to other moments from the 
performance.    

Critical slowing down before musical transitions?  
We next turned to our critical question: Whether critical 

musical transitions were preceded by critical slowing down. As 
predicted, both indices of critical slowing down — variability 
and lagged autocorrelation — increased systematically and 
selectively in the period leading up to a critical transition.  
These warning signals were increasing monotonically, as 
measured by Kendall’s tau, at most critical transitions between 
soundworlds, for both  variability (75% of transitions; M = 0.24 
± 0.19 SEM) and for lagged autocorrelation (75% of 
transitions; M = 0.28 ± 0.17 SEM). By comparison, for 
instance, these early warning signals were largely flat during 
the rest of the second half of the soundworlds (variability: M = 
0.05 ± 0.14 SEM; autocorrelation: M = 0.05 ± 0.17 SEM). The 
complex systems generating these soundworlds, therefore, 
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appeared to undergo critical slowing down in the lead-up to 
transitioning between soundworlds.  

To account for non-stationarity, we compared these results to 
surrogate time series with the same linear trend but scrambled 
noise structure. We fit a linear model to the original 
multidimensional feature representation of the audio and 
randomly scrambled the residuals across time, creating a 
surrogate time series that controlled for drift in the data while 
randomizing the temporal spread of the noise structure. 
Comparing the early warning signals in the original time series 
to equivalent times in the surrogate time series allows us to rule 
out the possibility that increases in early warning signals are 
driven entirely by non-stationarity. 

We analyzed the timecourse and specificity of critical 
slowing down with a linear mixed effects model of the tau 
values across time. This model had fixed effects of 
soundworld-normalized time (start = 0, end = 1), the time series 
(actual = 0, surrogate = 1), and their interaction, along with 
random by-soundworld intercepts and effects of time series 
(actual vs. surrogate).  

This model confirmed that both variability and  lagged 
autocorrelation increased monotonically in the lead-up to a 
critical transition (variability: b = 0.43 ± 0.08 SEM, p < 0.001; 
autocorrelation: b = 0.30 ± 0.09 SEM, p = 0.02). This increase 
was damped significantly in the surrogate time series 
(variability: b = 0.32 ± 0.14 SEM, p = 0.047; autocorrelation: b 
= -0.32 ± 0.12 SEM, p = 0.04). Finally, critical slowing down 
increased significantly over the course of the soundworlds 
(variability: b = 0.77 ± 0.15 SEM, p < 0.001; autocorrelation: b 
= -0.47 ± 0.18 SEM, p < 0.001) — but this occurred primarily 
in the actual time series rather than the surrogate time series 
(variability: b = -0.56 ± 0.02 SEM, p < 0.001; autocorrelation: b 
= -0.40 ± 0.02 SEM, p < 0.001). In summary, these distributed 
systems underwent critical slowing down in the period leading 
up to a critical transition. 

 
Figure 2. Early warning signals increased systematically 
before critical transitions. The first three plots (blue) show 
soundworlds where the early warning signal (vertical axis) 
increased systematically leading up to a musical transition 
(dashed lines). For comparison, the fourth plot (red) shows a 
soundworld where the performance did not exhibit critical 

slowing down before transitioning (i.e., variability decreased, 
rather than increased). The predicted increase in the early 
warning signals before a transition is captured by the 
correlation between the early warning signal and time (i.e., 
Kendall’s tau), plotted in Figure 3.  

 
Figure 3. Mean critical slowing down in the period 
immediately before a musical transition (dashed line). The 
vertical axis indicates the direction and rate of change (i.e., 
Kendall’s tau) for each early warning signal in a 35-sec. 
sliding window ending at that moment. Positive values indicate 
monotonic increase. Time (x-axis) is normalized to go from 0 to 
1 within each soundworld. Error ribbon = standard error of the 
mean. 

Discussion  
We asked whether adopting an ‘ecosystem’ perspective 

might give us empirical traction on an outstanding problem: 
understanding when and why critical transitions occur in 
distributed cognitive activity. As our case study, we chose the 
sudden musical transitions that occur in improvised free jazz 
performance. Building on theoretical and empirical 
investigations of critical transitions in natural ecosystems, we 
calculated generic early warning signals that are thought to 
index critical slowing down, a kind of loss-of-resilience that 
can precede critical transitions. As predicted, we found that 
improvised transitions between musical ‘soundworlds’ were 
preceded by a monotonic increase in two measures of critical 
slowing down: variability and lagged autocorrelation. In free 
jazz ensembles, sudden transitions from one distributed 
cognitive regime to another appear to follow the same general 
patterns that characterize transitions in natural ecosystems.  

Improvised music as a cognitive ecosystem 
  Some of the most sophisticated and intricate formal systems 
invented by humans have arisen in the domain of music: tonal 
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harmony of Western classical music, the polyrhythms of 
African drumming, melodic counterpoint of the Bach 
inventions. In composed music, musical structures (i.e. the 
surface realizations of these formal systems) are formulated 
ahead of time by an individual composer and dictated to 
performers in the form of a written score. But in improvised 
music, abstract musical structures emerge spontaneously out of 
the distributed activity of the ensemble. Interaction is key in 
improvised music. Each individual is continuously adapting to 
and influencing the other members of the ensemble (Walton et 
al, 2015). Musical meaning is less ascribable to individual 
intentions as it is to the ongoing interplay between the various 
voices of the ensemble (Borgo, 2005). Improvised music thus 
provides us a testbed to study how high-level cognition (in the 
form of abstract musical structures) emerges out of distributed 
action of embodied, highly specialized agents. 

There are many genres of improvised music across the globe. 
Each musical tradition can be characterized by distinct 
conceptual structures, functional norms and roles aesthetic 
guidelines. For example, the raga in Indian classical music 
provides a framework for improvising coherent melodies over 
long song forms. Jazz musicians master a shared repertoire of 
"standard" tunes – melodies with corresponding harmonic 
structures, that serve as improvisational templates. Musical 
genres also determine functional roles assigned to particular 
instruments. In straight ahead jazz for instance, the bassist 
typically "walks" (i.e. plays quarter notes to mark time and 
passing harmonic structure) while the saxophonist improvises a 
melodic solo over the underlying harmony. These culturally 
construed functional roles and formal structures are learned in 
intimate detail by improvisers ahead of time, whose shared 
knowledge facilitates the spontaneous generation of 
sophisticated, compelling musical pieces. The existence of 
these culturally produced constraints, and of learning on the 
part of individual musicians constitutes an interesting departure 
of cognitive ecosystems from natural ecosystems.  
  In this paper we analyzed recordings of free jazz. In free jazz, 
musicians with strong training in straight-ahead jazz come 
together to improvise without reference to any preconceived 
"tune" or template. The musicians have a shared mastery of the 
formal structures of straight-ahead jazz, but they are not 
confined by them. Functional roles can be challenged, new 
systems of harmony and rhythm can be explored. In the course 
of this exploration, groups often settle into stable regimes, 
which can be characterized by distinct harmonic structures, 
rhythmic patterns, or sets functional roles. For example, in the 
quartets analyzed in this paper, there might be a cacophonous 
section in which everyone is playing as loud and fast as 
possible with little to no group coherence. This section may 
then yield to an intimate duo with saxophone and guitar 
carefully co-constructing melodic and harmonic material. 
   Most of the periods leading up to transitions between 
different stable regimes showed evidence of critical slowing 
down. This is due to the collective, decentralized manner in 

which those transitions are executed. Within a given stable 
regime, one performer within the ensemble may hint at a new 
musical area to explore. This hint might be reinforced by 
another musician playing a supporting motif, which might be 
further reinforced by a third musician catching onto the 
developing theme. In this manner, an ensemble can quickly 
transition between qualitatively different stable regimes without 
any central locus of control. While this may be the norm, it is 
important to note that improvising ensembles also have the 
capacity to make centralized transitions. In some cases, an 
individual may simply decide to start playing something 
different and force the ensemble along an alternate path. An 
improvising ensemble's capability to support both decentralized 
and centralized dynamics constitutes an interesting distinction 
with natural ecosystems. 

Future work 
In future iterations, we would like to use a more sophisticated 

modeling technique in our surrogate analysis. Here drift was 
modeled with a linear regression spanning the entire range of 
the recording, but it is possible that shorter-spanned nonlinear 
trends present in our dataset were not captured by this 
approach. Following the example of past works, it may be 
beneficial to fit an ARIMA model to the music timeseries 
(Wang et al, 2012). 

Another extension of this work will be to add more 
recordings to the corpus. Doing so will enable increased 
statistical confidence in the results, as well as an opportunity to 
analyze the behavior of different musical ensembles. Moreover, 
adding composed music to our dataset would enable 
comparison between improvised versus composed transitions. 
If it is true that the CSD observed in the free jazz transitions 
owes to the distributed nature of improvised performance, we 
should expect to not observe CSD in composed transitions as 
they are issued by an a priori script (i.e. the written score). 

 

Conclusion 
Much high-level cognition is accomplished by systems that are 
complex, distributed, and adaptive. Political consensus requires 
multiple individuals bringing their beliefs into alignment. 
Scientific activity is almost always a community endeavor. 
Great musical improvisation often requires each performer to 
cede some autonomy to the emergent will of the group. Each of 
these systems can stay in a particular regime for a prolonged 
period of time — before suddenly transitioning to a new 
cognitive state. One political consensus might break down, 
replaced by another. Scientists have eureka moments. 
Musicians shock their audiences — and themselves — by 
playing something that has never been played before. 
Describing when these critical transitions occur is a first step 
towards understanding why.  
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