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Abstract. In this paper we present a method for polyphonic music
source separation from their monaural mixture, where the underlying
assumption is that the harmonic structure of a musical instrument re-
mains roughly the same even if it is played at various pitches and is
recorded in various mixing environments. We incorporate with nonneg-

ativity, shift-invariance, and sparseness to select representative spectral
basis vectors that are used to restore music sources from their monaural
mixture. Experimental results with monaural instantaneous mixture of
voice/cello and monaural convolutive mixture of saxophone/viola, are
shown to confirm the validity of our proposed method.

1 Introduction

The nonnegative matrix factorization (NMF) [1] or its extension such as non-
negative matrix deconvolution (NMD) [2] and sparse coding [3], was shown to
be useful in polyphonic music description [4, 5], in the extraction of multiple
music sound sources [2, 6], and in general sound classification [7]. Some of these
methods regard each note as a source, which might be appropriate for music
transcription and work for source separation in a very limited case.

In this paper we present a method for monaural polyphonic music separa-
tion, the goal of which is to restore the whole melody generated by each musical
instrument from a single channel mixture of several polyphonic musical sounds.
We assume that the harmonic structure of a musical instrument approximately
remains the same, even if it is played at different pitches and is recorded in dif-
ferent environments. Different musical instruments are assumed to have different
spectral characteristics (harmonic structure).

The main idea is to select a few representative spectral basis vectors in
the auditory spectrogram of measurement data, assuming that there are some
sections in the auditory spectrogram where only a single note from a single
source appears. Rather than learning basis vectors, we select a few appropri-
ate nonnegative basis vectors using the sparseness of spectral coefficients. These
shift-invariant nonnegative basis vectors are fixed and associated encoding vari-
ables are learned by the overlapping NMF [8] which incorporates with the shift-
invariant representation, in order to restore music sources. The method is related



to our earlier work [9] and the generalized prior subspace analysis [10]. However,
the key distinction lies in a way of selecting shift-invariant basis vectors. Promis-
ing results with monaural instantaneous mixture of voice/cello and convolutive
mixture of saxophone/viola, are presented to confirm the validity of our proposed
method.

2 Overlapping NMF: Nonnegativity and Shift-Invariance

Nonnegative matrix factorization (NMF) is a simple but efficient factorization
method for decomposing multivariate data into a linear combination of basis
vectors with nonnegativity constraints for both basis and encoding matrix [1].

Given a nonnegative data matrix V ∈ R
m×N (where Vij ≥ 0), NMF seeks a

factorization

V ≈WH, (1)

where W ∈ R
m×n (n ≤ m) contains nonnegative basis vectors in its columns and

H ∈ R
n×N represents the nonnegative encoding variable matrix. Appropriate

objective functions and associated multiplicative updating algorithms for NMF
can be found in [1].

The overlapping NMF is an interesting extension of the original NMF, where
transform-invariant representation and a sparseness constraint are incorporated
with NMF [8]. Some of basis vectors computed by NMF could correspond to
the transformed versions of a single representative basis vector. The basic idea
of the overlapping NMF is to find transformation-invariant basis vectors such
that fewer number of basis vectors could reconstruct observed data. Given a set
of transformation matrices, T =

{
T

(1),T (2), . . . ,T (K)
}

, the overlapping NMF

finds a nonnegative basis matrix W and a set of nonnegative encoding matrix{
H

(k)
}

(for k = 1, . . . ,K) which minimizes

J (W ,H) =
1

2

∥∥∥∥∥V −
K∑

k=1

T
(k)

WH
(k)

∥∥∥∥∥

2

F

, (2)

where ‖ · ‖F represents Frobenious norm. The multiplicative updating rules for
the overlapping NMF were derived in [8], which are summarized below.

Algorithm Outline: Overlapping NMF [8]

Step 1 Calculate the reconstruction: R =
∑K

k=1 T
(k)

WH
(k).

Step 2 Update the encoding matrix by

H
(k) ←H

(k) ⊙
W

⊤
[
T

(k)
]⊤

V

W
⊤

[
T

(k)
]⊤

R

, k = 1, . . . ,K, (3)

where ⊙ denotes the Hadamard product and the division is carried out in
an element-wise fashion.



Step 3 Calculate the reconstruction R again using the encoding matrix H
(k)

updated in Step 2, as in Step 1.
Step 4 Update the basis matrix by

W ←W ⊙
∑K

k=1

[
T

(k)
]⊤

V

[
H

(k)
]⊤

∑K

k=1

[
T

(k)
]⊤

R

[
H

(k)
]⊤ . (4)

3 Spectral Basis Selection: Sparseness

The goal of spectral basis selection is to choose R representative vectors V r =
[vr1

· · · vrR
] (R is the number of music sources) from V = [v1 · · · vN ] where

V is the data matrix associated with the spectrogram of mixed sound. Each
column vector vt corresponds to the power spectrum of the mixed sound at time
t = 1, . . . , N . Selected representative vectors are fixed as basis vectors that are
used to learn an associated encoding matrix set through the overlapping NMF
with sparseness constraint, in order to restore unmixed musical sound.

Our spectral basis selection method is based on the assumption that there
are some sections where only a single note from a single source appears. In
the spectrogram of mixed sound, solo sections are searched partly through the
sparseness value of vt over time. Our earlier work can be found in [9].

Fig. 1 shows the schematic diagram of the spectral basis selection method,
consisting of two parts. The first part is to select several candidate vectors V c =
[vc1

vc2
· · · vcK

] from V using a sparseness measure and a clustering-elimination
method. The second part involves determining representative basis vectors from
candidate vectors, through the overlapping NMF. More detailed description is
summarized below.

Part 1

1. Sparseness calculation: We calculate the sparseness value for input vec-
tors vt for t = 1, . . . , N , using the measure in [11],

ξt = sparseness(vt) =

√
m− (

∑
i |vit|)/

√∑
i v2

it√
m− 1

, (5)

where vit is the ith element of the m-dimensional vector vt.
2. Normalization: We normalize input vectors vt for t = 1, . . . , N such that

each vector has unit Euclidean norm,

vt ←
vt

‖vt‖
. (6)

3. Alignment: We calculate the index fi = t∗ which involves the largest sparse-
ness value among {ξt}Nt=1, i.e,

t∗ = arg max
1≤t≤N

ξt. (7)
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Fig. 1. Schematic diagram of our spectral basis selection method, is shown, where ’Part
1’ involves the selection of candidate vectors and ’Part 2’ determines a few representa-
tive spectral basis vectors from candidate vectors found in ’Part 1’.

The vector vfi
associated with the index fi = t∗, is referred to as a foundation

vector that has the largest sparseness value among {vt}. Then we align each
vector vj in L remaining input vectors (initially L = N but L represents
the number of remaining vectors after the clustering-elimination procedure
in step 4) with respect to the current foundation vector vfi

such that the
Euclidean distance between vfi

and vertically shift-up or -down version of
vj , is minimized. In other words, vectors vj are vertically shifted-up or -down
such that their shifted version provides the minimal Euclidean distance from
the foundation vector vfi

.

4. Clustering-Elimination: The goal of the clustering-elimination step is to
eliminate vectors belonging to the cluster where the foundation vector is
contained, since those vectors are regarded as redundant vectors. To this
end, we first apply the k-means clustering method to dichotomize the aligned
vectors (including the foundation vector), leading to two groups Sci

and S̄ci
.

The cluster containing the foundation vectors, Sci
, is further grouped into R

sub-clusters, producing {vci1
, . . . ,vciR

} that is a collection of mean vectors
of R sub-clusters.

5. Candidate selection: Add the mean vector of the cluster Sci
to the candi-

date set.

6. Repeat: Repeat steps 3-5 with data excluding vectors in Sci
, i.e, V − Sci

,
until we choose a pre-specified number of candidate vectors or there is no
remaining input vector.

Part 2



This second part involves determining the final representative spectral basis
vectors {vr1

, . . . ,vrR
} from K ≥ R candidate vectors {vc1

, . . . ,vcK
} (where K is

the integral multiples of R, depending on the number of loops in the clustering-
elimination) found in the first part.

1. Overlapping NMF Repeat the following step for all possible
(
K
R

)
combina-

tion. Construct a small set of input vectors Ṽ by random sampling and treat
them at input vectors for the overlapping NMF. Choose R candidate vectors

from {vc1
, . . . ,vcK

} and fix them (denoted by W̃ ) as basis vectors. Run the

overlapping NMF with these Ṽ and W̃ to calculate the reconstruction error.
2. Final selection Choose spectral basis vectors that give the lowest recon-

struction error.
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Fig. 2. Auditory spectrograms of original sound of /ah/ voice and a single string of
a cello are shown in (a) and (b), respectively. Horizontal bars reflect the harmonic
structure. One can see that every note is the vertically-shifted version of each other if
their musical instrument sources are the same. Monaural mixture of voice and cello is
shown in (c) and final two representative spectral basis vectors in (d) which give the
smallest reconstruction error in the overlapping NMF are selected by our algorithm in
Fig. 1. Each of these two basis vectors is a representative one for voice and a string of
cello. Unmixed sound is shown in (e) and (f) for voice and cello, respectively.

4 Numerical Experiments

We present two simulation results for monaural instantaneous mixtures of voice
and cello and monaural convolutive mixtures of saxophone and viola. We apply



our spectral basis selection method with the overlapping NMF to these two
data sets transformed to auditory spectrograms using the NSL toolbox [12].
Experimental results are shown in Fig. 2 and 3 where figure captions describe
detailed results. Note that the mixture in Fig. 3 (c) is a convolutive mixture and
we can apply our framework even in that case without any modification if the
reverberation time is not too long.
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Fig. 3. Auditory spectrograms of original sound of saxophone and viola are shown in
(a) and (b), respectively. Every note is artificially generated by changing the frequency
of a real sample sound, so that the spectral character of each instrument is constant
in all the variations of notes. We mixed these two signals by convolving them with
two impulse response signals measured in a studio environment (reverberation time is
about 150ms and the frequency response makes a peak at around 27Hz). The monaural
convolutive mixture is shown in (c) and finally selected two representative spectral
basis vectors are in (d). Unmixed sound is shown in (e) and (f) for saxophone and
viola, respectively.

Fig. 4 shows the reusability of our obtained spectral basis vectors. The mix-
ture in Fig. 4 (c) is another part of the same song used in Fig. 3. In this example,
we do not have to find out the spectral basis vectors of saxophone and viola again,
but can simply reuse the previous results of Fig. 3. Note that if some input data
do not satisfy the horizontal sparseness, which means that there is no section
occupied by only one instrument, our spectral basis selection method will fail in
this case. However we can attack this problem by reusing the previously obtained
spectral basis vectors of the same source instruments. Audio demo can be found
in http://home.postech.ac.kr/∼minjekim/demo.php. .
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Fig. 4. These figures show the reusability of spectral basis vectors. Auditory spectro-
grams of original sound of saxophone and viola are shown in (a) and (b), respectively.
Every note is generated in the same manner of Fig. 3 but the melody is totally dif-
ferent from it since this is another part of the same song. The mixing process is also
the same with the previous experiment. The monaural convolutive mixture is shown
in (c). Instead of finding out representative basis vectors, we reused the basis vectors
(d) found in previous example. Unmixed sound is shown in (e) and (f) for saxophone
and viola, respectively.

The set of transformation matrices, T , that we used, is

T =

{
T

(k)
∣∣ T

(k) =

k−m
7−→

I , 1 ≤ k ≤ 2m− 1

}
, (8)

where I ∈ R
m×m is the identity matrix and

j
7−→

I leads to the shift-up or shift-
down of row vectors of I by j, if j is positive or negative, respectively. After
shift-up or -down, empty elements are zero-padded.

For the case where m = 3, T
(2) and T

(5) (they means that k = 2 and k = 5)
are defined as

T
(2) =

2−3
7−→

I =




0 0 0
1 0 0
0 1 0


 , T

(5) =

5−3
7−→

I =




0 0 1
0 0 0
0 0 0


 . (9)

Multiplying a vector by these transformation matrices, leads to a set of vertically-
shifted vectors.



5 Discussions

We have presented a method of spectral basis selection for monaural music source
separation, where we incorporated with the harmonics, sparseness, clustering,
and the overlapping NMF. Rather than learning spectral basis vectors from
the data, our approach is to select a few representative spectral vectors among
given data and fix them as basis vectors to learn associated encoding variables
through the overlapping NMF, in order to restore unmixed sound. The success
of our approach lies in the two assumptions. The one is that the distinguished
timbre of a given musical instrument can be expressed by a transform-invariant
time-frequency representation, even though their pitches are varying. The other
is that there is solo sections in a musical sound where the contribution of each
source instrument appears. Our experimental results showed that the proposed
methods are reasonable in both instantaneous and convolutive mixture cases.
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