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ABSTRACT

Collaborative Audio Enhancement (CAE) aims at separating a dom-
inant source from crowdsourced recordings of a scene. This paper
proposes a CAE setup as a big ad-hoc microphone array problem,
assuming hundreds of sensors scattered over a large scene, e.g. a
concert hall or a street riot. An important characteristic in such cases
is the fact that not all sensors capture useful information, mainly be-
cause of the existence of strong local noise interferences and record-
ing artifacts. This renders traditional array processing techniques
inadequate for tasks such as source enhancement. One way to re-
cover the most common source while suppressing recording-specific
interference, is to share latent components across simultaneous mod-
els on multiple magnitude spectrograms. The proposed method im-
proves on the quality and the computational requirements of such
a model by using a two-stage nearest-neighborhood search at every
EM update. Its optional first-round search uses Hamming distance
between hashed spectrograms to quickly find a redundant candidate
set, and then a subsequent step narrows the set down to a subset us-
ing more appropriate cross entropy. Experimental results show that
the proposed neighborhood schemes converge to the better quality
solutions faster than the comprehensive model using all data.

Index Terms— Probabilistic Topic Models, Probabilistic Latent
Component Sharing, Ad-hoc Microphone Array, Collaborative Au-
dio Enhancement, Social Data

1. INTRODUCTION

Collaborative Audio Enhancement (CAE) tries to extract the most
significant source out of a set of noisy observations, crowdsourced
recordings, potentially collected from socially shared data. In the
CAE scenario, we assume that each observed recording can be
uniquely contaminated, e.g. by an artifact from aggressive audio
coding, an interfering sound captured only by that sensor, a bad
frequency response of the microphone, clipping, etc [1]. Such
recordings can also be thought of as signals from an ad-hoc micro-
phone array in the sense that the channels are not synchronized and
the sensor locations and characteristics are unknown [2, 3].

One challenge is to synchronize such a large set of signals. An
effective approach is to assume a calibration signal in all the record-
ings as a guide to align with [2]. Another more realistic approach
extracts noise-robust landmarks from audio spectrograms to identify
videos [4], or to synchronize audio-visual signals [5], where robust
matching is done efficiently using integer operations. In this paper
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we assume that all signals are already aligned using one of the afore-
mentioned methods, and instead we focus on the enhancement part.

Another challenge is to recover the geometric information. A
closed form solution for the sensor location estimation problem us-
ing signals contaminated with Gaussian noise was proposed in [2].
A beamforming technique for an ad-hoc microphone array was also
proposed in [3] in the presence of localized noise sources, while the
clustering-based calibration of sensors does not scale up well to the
much bigger and heterogeneous array setup that we assume in this
paper. More recently, an ad-hoc array calibration method was pro-
posed [6], which enhances a noisy distance matrix using a low-rank
approximation. The matrix completion is effectively done by Non-
negative Matrix Factorization (NMF) [7, 8] particularly if some ele-
ments in the distance matrix are missing. However, it was evaluated
when at least more than half of the locations are known, and the
source separation performance was not examined.

Probabilistic Latent Component Sharing (PLCS) allows some
topics, or equivalently latent components in the context of the other
latent variable models, to share same parameters during simultane-
ous latent variable modeling on the synchronized magnitude spectro-
grams [1], as a probabilistic version of Nonnegative Matrix Partial
Co-Factorization [9]. Since CAE assumes that all recordings have
captured some elements of the most common source, PLCS esti-
mates the dominant source as a mixture of shared components, while
the unshared components at each recording-specific topic model are
used to explain the unique interferences that are to be discarded. Un-
fortunately, PLCS does not scale satisfactorily so as to allow analysis
of a large number of input recordings: the complexity linearly in-
creases as the number of recordings gets bigger. Furthermore, more
social data is not always helpful, because poor recordings at loca-
tions far away from the source of interest may include a great deal of
interferences and not contribute to the reconstruction of the desired
source significantly.

We propose a streamlined PLCS algorithm that adaptively uses
a subset of the available recordings rather than the whole set. The
selection is done at every EM update based on cross entropy between
the normalized magnitude spectrograms of the dominant source es-
timation and the noisy observations. Additionally, we show how to
employ hashing to improve the complexity of the requisite search. If
Hamming distance between hashed spectrograms is correlated to the
original distance, it can reduce the search space by providing with
a candidate set, followed by the second search with the full metric
only on those candidates. The proposed methods indeed give better
performances in simulated CAE tasks by selectively utilizing crowd-
sourced data made up from up to a thousand individual recordings.
Finally, the proposed methods converge to a better solution faster.
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Fig. 1: PLSI topic modeling with various conditions: (a) Ordinary
PLSI (b) An oracle PLSI only on the data samples that are closest to
the optimal solutions (c) PLSI updates only on the running nearest
neighbors to the current estimates of the sources. In the figure, all
the source estimates are shown from every iteration, and their order
in time is represented with a curved arrow. All parameters start from
the same position for comparison.

2. NEIGHBORHOOD-BASED TOPIC MODELING

Probabilistic Latent Semantic Indexing (PLSI) [10, 11] has been
widely used in audio research, and it has been known that sparse
overcomplete coding is beneficial for the separation performance,
since sparse coding on the training spectra leads to a tighter convex
hull for the source [12]1. In this paper we do not specifically focus
on the sparseness of encoding, but it is also true for the proposed
model that the data samples that are closer to the corners of the con-
vex hull (or the normalized basis vectors of NMF) contribute more
to the parameter estimation. For example, Fig. 1 (a) shows that the
ordinary PLSI learns a subspace that reconstructs the mixture sam-
ples as convex combination of the two converged sources. In other
words, the mixture samples should lie on or near the line that con-
nects the learned sources for a quality approximation. In (b) we do
the same PLSI modeling, but only on the two mixture points closest
to the optimal solutions. This is an oracle run, because usually we
cannot know the optimal solution in advance. What we can see is
that the two samples are just enough to recover the same subspace
with a permutation ambiguity.

An alternative to the oracle scenario is to find the nearest neigh-
bors at every iteration given a set of source estimates. Fig. 1 (c)
demonstrates this case. Once again, the source estimates converge
to the same subspace as in the ordinary PLSI and the one with an
oracle minimal set of inputs. Formally, we can intervene in the EM
updates of original PLSI by forming a tentative set of neighbors so
that the computation is done only on the set as follows:

P (f |z)←
P (f |z)

∑
t∈Nz

Vf,tPt(z)∑
z P (f |z)Pt(z)

, P (f |z)← P (f |z)∑
f P (f |z) , (1)

Pt(z)←
Pt(z)

∑
f Vf,tP (f |z)∑

z P (f |z)Pt(z)
, Pt(z)←

Pt(z)∑
z Pt(z)

, (2)

where the M-step updates are equivalently reformulated to include
the E-step, so that the posterior probabilities are updated more often.
In (1) we do the summation only over the nearest neighbor set Nz ,
which is a subset of all spectra whose elements are always closer to
the z-th basis vector P (f |z) than the non-neighbors as follows:

−
∑
f

V̂f,t∈Nz logP (f |z) < −
∑
f

V̂f,t′ /∈Nz logP (f |z), (3)

1NMF with KL-divergence as the error function is also known to be equiv-
alent to PLSI with a proper parameter normalization [13]. Therefore, the
proposed methods can be directly used in NMF-based systems as well.

where the column vectors of V̂ are normalized, i.e.
∑

f V̂f,t = 1,
for the proper calculation of cross entropy. The set should be small
enough to effectively represent the corners of the convex hull, sim-
ilarly to the locality preservation issues in manifold learning, such
as in [14]. We refresh Nz according to the new P (f |z) after every
M-step in (1).

Note that if this set is optimal from the start and does not change,
the results will be similar to Fig. 1 (b). IfNz always includes all data
samples, then the updates in (1) and (2) are equivalent to the ordinary
PLSI’s by resulting in Fig. 1 (a).

3. NEIGHBORHOOD-BASED PROBABILISTIC LATENT
COMPONENT SHARING

3.1. Neighborhood-Based Extension

Neighborhood-based extensions of a probabilistic topic model were
proposed in [15, 16] for manifold preserving source separation.
However, those models are designed to find out a sparse code from
an overcomplete dictionary, where the dictionary is a large collec-
tion of clean source spectra. Therefore, the search is on the clean
spectra, not on the noisy spectrograms.

In this section we propose a new PLCS model employing a
neighbor search on the spectrograms. At every EM iteration, we
update the parameters by analysing only a subset of the recordings.
The subset can be also refreshed every time according to the dis-
tances between the recordings and the new source estimation. In the
CAE scenario, the source estimate is not just a component anymore,
but a convex combination of the shared components across the mul-
tiple simultaneous probabilistic topic models.

First, for the l-th recording, we assume that its magnitude spec-
trogram is generated from a distribution that can be decomposed into
the common and individual topics:

V l
f,t∼

∑
z∈zC

PC(f |z)PC(t|z)P l(z)+
∑
z∈zl

I

P l
I(f |z)P l

I(t|z)P l(z), (4)

where the parameters with C as subscripts, but with no superscript,
are common across all models, while the subscript I stands for the
recording-specific individual parameters along with a superscript l
to distinguish recordings. We use a symmetric PLSI version [11]
in which the temporal encoding P (t|z) represents probabilities over
time, and consequently requiring an addition weight P (z) that gov-
erns the global activation of the component. The global weights are
grouped into two, i.e. zC and zlI , which denote the sets of indices
for the common and individual components, respectively.

The parameters are updated with the EM algorithm as in [1],
but this time we introduce the neighborhood concept as in Section 2.
Therefore, the updates use only some selected recordings that belong
to the neighbor set NS that are nearest to the common source. The
series of M-steps are as follows:

For l ∈ NS and z ∈ zlI ,

P l
I(f |z)←

P l
I(f |z)P l(z)

∑
t V

l
f,tP

l
I(t|z)∑

z′∈zC∪zlI
P l(f |z′)P l(t|z′)P l(z′)

,

P l
I(f |z)← P l

I(f |z)/
∑
f

P l
I(f |z), (5)

P l
I(t|z)←

P l
I(t|z)P l(z)

∑
f V

l
f,tP

l
I(f |z)∑

z′∈zC∪zlI
P l(f |z′)P l(t|z′)P l(z′)

,



P l
I(t|z)← P l

I(t|z)/
∑
t

P l
I(t|z), (6)

For l ∈ NS and z ∈ zC ,

PC(f |z)←
∑
l∈NS

PC(f |z)P l(z)
∑

t V
l
f,tPC(t|z)∑

z′∈zC∪zlI
P l(f |z′)P l(t|z′)P l(z′)

+ βαf,z,

PC(f |z)← PC(f |z)/
∑
f

PC(f |z), (7)

PC(t|z)←
∑
l∈NS

PC(t|z)P l(z)
∑

f V
l
f,tPC(f |z)∑

z′∈zC∪zlI
P l(f |z′)P l(t|z′)P l(z′)

,

PC(t|z)← PC(t|z)/
∑
t

PC(t|z), (8)

For l ∈ NS and z ∈ zC ∪ zlI

P l(z)←
P l(z)

∑
f,t V

l
f,tP

l(f |z)P l(t|z)∑
z′∈zC∪zlI

P l(f |z′)P l(t|z′)P l(z′)
. (9)

Note that the E-step is absorbed in the listed M-steps as well. For
the parameters notated without subscripts C or I their associations
should be obvious from the context, or it does not matter whether
they are shared or not. For the shared basis vectors, which make up
the dominant source, we can also use prior knowledge if the nature
of the target source is known, e.g. clean bases from female speech,
from a studio recording of the same song played in the scene, etc. We
use a conjugate prior αf,z for this, whose contribution is controlled
by β as in [1].

Sharing is achieved by doing another average over l for those
common parameters in (7) and (8). Therefore, when it comes to
hundreds of recordings, this summation would be computationally
burdensome had it not been for using the neighboring subset NS .
Focusing only onNS also helps speed up learning the individual pa-
rameters in (5) and (6), because we can largely skip all the recording-
specific modeling when l does not belong toNS . Once again,NS is
a set based on cross entropy relationships, but between the observed
noisy spectrogram and the estimated source spectrogram as follows:

−
∑
f,t

V̂ l∈NS
f,t log Ŝf,t < −

∑
f,t

V̂ l′ /∈NS
f,t log Ŝf,t, (10)

where the spectrograms Ŝ and V̂ l are normalized along both axes,
e.g.

∑
f,t V̂

l
f,t = 1. The source is estimated from the average of the

common components over the participating recordings:

Sf,t←
1

|NS |
∑
l∈NS

V
(l)
f,t

∑
z∈zC

PC(f |z)PC(t|z)P (l)(z)∑
z∈zC∪z

(l)
I

PC(f |z)PC(t|z)P (l)(z)
. (11)

We refreshNS at every iteration, and therefore, S should be updated
before that, too. Note that (11) is suboptimal, because the amount of
the contribution from each recording to the final result is not known.

3.2. The Proposed Two-Stage Method

We define F , T , Z, and L to denote the number of rows, columns,
components, and recordings, respectively. Then, the computa-
tional complexity of an EM update in (5)-(8) is in the order of
O
(
FTZ|NS |

)
. In original PLCS NS = L, but in the proposed

systems we set |NS |< L, so that the use of NS is beneficial. The
complexity for the construction of the neighbor set in (10) and the
source in (11) are O(FTL) and O

(
FT |NS |

)
, respectively.

In this section we propose a two-stage neighborhood search
method that further decreases the complexity of (10) fromO(FTL)
down to O

(
FT |NH |

)
, by introducing a set of candidate neighbors

NH , where |NS | < |NH | < L and NS ⊂ NH . Construction of
NH is cheaper, because we use binary operations.

To this end, we propose to hash all the recordings into a binary
representation that can be more efficient in some arithmetic opera-
tions. Any hash function can be used if it meets the conditions for the
family of locality sensitive hashing: (a) originally closer data points
are more probable to collide into the same hash code (b) Hamming
distance between the codes approximates the original distance met-
ric [17]. We are particularly interested in Winner-Take-All (WTA)
hashing, which also holds those properties [18, 19].

In the recent application of WTA hashing for speeding up the
sparse encoding process of dictionary-based source separation, a few
candidates of the overcomplete dictionary items are selected based
on the WTA Hamming distance in the first place, and then the se-
lection is refined using cross entropy [20]. There are pros and cons
of the two searches. Cross entropy is more accurate, yet costly due
to the floating-point operations and logarithm. On the other hand,
Hamming distance is cheap to calculate thanks to the binary repre-
sentation of the hash codes, while inaccurate. Therefore, the two-
stage search on the dictionary consists of (a) the first round that
constructs a bigger candidate set, e.g. 3K items, using Hamming
distance (b) the second round only on the 3K candidates rather than
the whole dictionary based on cross entropy, where K = |NS |.

A WTA hash code is generated by randomly choosing M ele-
ments out of the input vector, and then writing down the index of
the maximum among them by flipping the corresponding element of
an all-zero binary vector of length M as the indicator. By repeat-
ing this experiment Q times, the total bits used for an input vector
are QM bits2. Hamming distance among the two binary hash codes
x, y ∈ BQM×1 can be calculated by a bitwise AND operation fol-
lowed by bit counting, i.e.

∑
i xi ∧ yi, and then inverting the result.

Since this procedure approximates a rank order metric, a relative or-
dering of the input elements, it can still be a discriminative feature
even with its binary representations. On the other hand, the mis-
match between Hamming distance and cross entropy hinders WTA
hash codes from replacing the original distance measure.

We start from hashing all the recordings in advance by using the
WTA hash function φ: ṽl ← φ(vec(V l)), where vec() vectorizes a
matrix. Now after every source update (11), we update the source’
hash code as well: s̃ ← φ(vec(S)). In the first-round search, us-
ing this new hash code along with the already prepared ones for the
recordings, we calculate another candidate set NH , which meets an
inequality as follows:

QM∑
n

(
ṽl∈NH
n ∧ s̃n

)
>

QM∑
n

(
ṽl

′ /∈NH
n ∧ s̃n

)
, (12)

Now that we have a candidate set, the second search is limited only
on NH rather than all the L recordings. In other words, we still do
the search based on (10), but now the inequality is guaranteed only
in the candidate set l, l′ ∈ NH , assumingNS ⊂ NH .

4. EXPERIMENTS

For experimental validation, we simulate an audio scene where 30
sources are randomly scattered in a square space of 50 meters by 50

2For example, 3 = 0100 when M = 4, while in the usual binary rep-
resentation with dlog2(M)e bits per integer, 3 = 11 . This consumes more
bits, but the Hamming distance calculation is more convenient.
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Fig. 2: Average SDR performances of the systems with different
numbers of input signals and nearest neighboring measures.

meters. Among the sources, one female speech is randomly chosen
and placed at the center with 20dB louder volume than the others.
30 sources consist of 10 male and 10 female TIMIT speech signals,
and 10 non-stationary noise signals used in [21]. All sources are ei-
ther cut to 10 seconds long if longer than that or repeated otherwise,
and sampled at 16KHz. L = {100, 500, 1000} are the number of
sensors that are randomly placed. Therefore, a recording is a mix-
ture of all the sources with different sound pressure levels depending
on the distance between the source and the sensor. This is a chal-
lenging setup that models real-world situations because the sensors
far from the dominant source can exhibit significantly louder inter-
ference. For now we assume that the signals are already aligned,
mixing is instantaneous, and no additional artifacts are present.

A short-time Fourier transform is done with 1024 pt Hann win-
dowing with 75% overlap. We set up 50 components for sharing
while 10 others are assigned per recording to capture interferences.
The a prior bases α for the common components were trained from
20 different female speakers using an ordinary PLSI. We choose a
big number, e.g. 5000, to initialize β, and decay it exponentially
during the updates. We change the number of neighbors to be one
of |NS | = L× {0.05, 0.1, 0.2, 0.5, 1}. The number of WTA candi-
dates are set to be |NH | = min(3|NS |, L). WTA parameters Q and
M are set to be dlog2 FT e = 219 and 2, respectively.
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Fig. 3: Run-time analysis of the PLCS system and the proposed
neighborhood-based methods.

Each sub-figure in Fig. 2 is an average of five repeated exper-
iments using five different choices of the dominant female source,
and randomized geometric configurations of the other sources and
sensors accordingly. Signal-to-Distortion Ratio (SDR) was mea-
sured up to 200 EM iterations as an overall separation quality score.
First thing we notice in (a), (c), and (e) is that the neighbor set in
terms of cross entropy successfully enhances the performance us-
ing only a small set of nearest neighbors: all the choices using this
neighborhood concept converge to a better solution earlier than the
full PLCS that uses 100% of the recordings (green squares). When
there are enough number of recordings (500 or 1000), only 5% of
them are needed to obtain the best results (blue crosses). All the sys-
tems including the full PLCS perform better than the average of the
input SDRs, or the SDR of a the median spectrogram of all record-
ings, i.e. V median

f,t = median([V 1
f,t, V

2
f,t, · · ·V L

f,t]).
Two-stage methods in (b), (d), and (f) also show on average bet-

ter performance than the full PLCS model or the median spectrogram
of the recordings. However, it is noticeable that its convergence is
not stable when only 5% are used. We believe that this fluctuation
can be mitigated when we increase the size ofNH , but it comes with
the cost of increased run-times. 10% and 20% cases are more stable
than the 5% case and comparable to their cross entropy counterparts.

Fig. 3 compares the average run-times of all the cases. If the
neighbor sets are reasonably small (5% or 10% in the first two bar
groups), we see a speed-up by using the two-stage method. Further-
more, the gap becomes larger as L increases. However, if |NS | is
too big (≥ 20%) the two-stage method starts to add more overhead
than the desired speed-up. Overall, both neighborhood methods with
a reasonably smaller neighborhood set,NS ≤ 0.2L, reduce the run-
times down to from around 16% to 50% of the the full PLCS model.
It is a significant saving given the fact that our MATLAB-based im-
plementation is not well-suited for a fair comparison in this case,
penalizing the efficiency of bitwise operations.

5. CONCLUSION AND FUTURE WORK

We proposed a neighborhood-based extension for the PLCS model to
handle a large number of recordings that can be found in abundance
through social data. We proposed two different neighbor search
schemes, one using the comprehensive cross entropy between a ten-
tative source spectrogram and the noisy recordings, and the other
first reduces the set down to some candidates based on WTA hash
codes followed by the comprehensive search only on those candi-
dates. Experimental results clearly supported the merit of the pro-
posed methods in terms of separation performances, convergence
behaviors, and run-times. Although separation was successful, the
robustness of the neighborhood-based extension to the other types
of recording artifacts, such as band-pass filtering, clipping, reverber-
ation, etc, is not shown here, and we leave it for future work.



6. REFERENCES

[1] M. Kim and P. Smaragdis, “Collaborative audio enhancement
using probabilistic latent component sharing,” in Proceedings
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), Vancouver, Canada, 2013.

[2] V. Raykar, I. Kozintsev, and R. Lienhart, “Position calibra-
tion of microphones and loudspeakers in distributed computing
platforms,” IEEE Transactions on Speech and Audio Process-
ing, vol. 13, no. 1, pp. 70–83, Jan 2005.

[3] I. Himawan, I. McCowan, and S. Sridharan, “Clustered
blind beamforming from ad-hoc microphone arrays. audio,”
ieeeaslp, vol. 19, no. 4, pp. 661–676, 2011.

[4] C. Cotton and D. P. Ellis, “Audio fingerprinting to identify mul-
tiple videos of an event,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), March 2010.

[5] N. J. Bryan, P. Smaragdis, and G. J. Mysore, “Clustering
and synchronizing multicamera video via landmark cross-
correlation,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP),
Kyoto, Japan, 2012.

[6] A. Asaei, N. Mohammadiha, M. J. Taghizadeh, S. Doclo, and
H. Bourlard, “On application of non-negative matrix factor-
ization for ad hoc microphone array calibration from incom-
plete noisy distances,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2015.

[7] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, pp. 788–
791, 1999.

[8] ——, “Algorithms for non-negative matrix factorization,” in
Advances in Neural Information Processing Systems (NIPS),
vol. 13. MIT Press, 2001.

[9] M. Kim, J. Yoo, K. Kang, and S. Choi, “Nonnegative matrix
partial co-factorization for spectral and temporal drum source
separation,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 5, no. 6, pp. 1192–1204, 2011.

[10] T. Hofmann, “Probablistic latent semantic analysis,” in Pro-
ceedings of the International Conference on Uncertainty in Ar-
tificial Intelligence (UAI), 1999.

[11] ——, “Probablistic latent semantic indexing,” in Proceedings
of the ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR), 1999.

[12] M. Shashanka, “Latent variable framework for modeling and
separating single channel acoustic sources,” Ph.D. dissertation,
Boston University, Aug. 2007.

[13] C. Ding, T. Li, and W. Peng, “On the equivalence between
non-negative matrix factorization and probabilistic latent se-
mantic indexing,” Computational Statistics and Data Analysis,
vol. 52, pp. 3913–3927, 2008.

[14] S. T. Roweis and L. Saul, “Nonlinear dimensionality reduc-
tion by locally linear embedding,” Science, vol. 290, pp. 2323–
2326, 2000.

[15] P. Smaragdis, M. Shashanka, and B. Raj, “A sparse non-
parametric approach for single channel separation of known
sounds,” in Advances in Neural Information Processing Sys-
tems (NIPS), Vancouver, BC, Canada, 2009.

[16] M. Kim and P. Smaragdis, “Manifold preserving hierarchi-
cal topic models for quantization and approximation,” in Pro-
ceedings of the International Conference on Machine Learning
(ICML), Atlanta, Georgia, 2013.

[17] P. Indyk and R. Motwani, “Approximate nearest neighbor – to-
wards removing the curse of dimensionality,” in Proceedings of
the Annual ACM Symposium on Theory of Computing (STOC),
1998, pp. 604–613.

[18] J. Yagnik, D. Strelow, D. A. Ross, and R. Lin, “The power
of comparative reasoning,” in Proceedings of the International
Conference on Computer Vision (ICCV), 2011, pp. 2431–2438.

[19] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-
narasimhan, and J. Yagnik, “Fast, accurate detection of
100,000 object classes on a single machine,” in Proceedings
of the IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2013.

[20] M. Kim, P. Smaragdis, and G. J. Mysore, “Efficient mani-
fold preserving audio source separation using locality sensitive
hashing,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May
2015.

[21] Z. Duan, G. J. Mysore, and P. Smaragdis, “Speech enhance-
ment by online non-negative spectrogram decomposition in
non-stationary noise environments,” in Proceedings of the An-
nual Conference of the International Speech Communication
Association (Interspeech), Portland, OR, 2012.


