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ABSTRACT

We introduce the “Intonation” dataset of amateur vocal perfor-
mances with a tendency for good intonation, collected from Smule,
Inc. The dataset can be used for music information retrieval tasks
such as autotuning, query by humming, and singing style analy-
sis. It is available upon request on the Stanford CCRMA DAMP
website.! We describe a semi-supervised approach to selecting the
audio recordings from a larger collection of performances based on
intonation patterns. The approach can be applied in other situations
where a researcher needs to extract a subset of data samples from
a large database. A comparison of the “Intonation” dataset and
the remaining collection of performances shows that the two have
different intonation behavior distributions.

Index Terms— music information retrieval, pitch, clustering,
singing, dataset

1. INTRODUCTION

Useful datasets have been made available for certain research topics
in the fields of music information retrieval and audio. These include
sound event detection [1], source separation [2], and recommenda-
tions [3]. Sometimes, though, the best dataset available for a topic
is huge and difficult to process. A large collection of audio record-
ings is available, but the recordings with suitable characteristics for
the given analysis form a smaller subset of the dataset. The filtering
process to extract the desired samples can be labor intensive, requir-
ing that the researcher select the samples with the desired features,
which may or may not be labeled and can be hard to model. One
way to approach this selection process is to automate it using feature
engineering and clustering.

In this paper, we present this kind of semi-automatic process for
the task of searching through a large database of amateur karaoke
performances for samples with a tendency for good musical into-
nation. The need for this task arose when we wished to train a
machine-learning model to predict pitch correction. We needed to
select performances that were in tune enough but not those that were
out of tune or contained little singing. We note that this task requires
quantifying the concept of singing “in tune”. As we describe in fur-
ther sections, the task is not obvious, so we avoid creating an explicit
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IThe dataset and detailed description of the contents are available upon
request via https://ccrma.stanford.edu/damp.

definition of “in tune” by using a semi-supervised approach. We first
extract musical intonation features from each performance, then ap-
ply spectral clustering to them and subjectively choose clusters that
sound “in tune” by listening to samples from each. We also introduce
the resulting dataset and an analysis of the intonation tendencies of
its performances. Though we present this approach for our specific
task, it can be adapted to other tasks, datasets, and features.

2. RELATED WORK

2.1. Pitch deviation analysis

Automatic analysis of musical intonation behavior has also been per-
formed in other contexts. For example, the authors of [4] described
an approach to discovering talented singers on YouTube based on
features extracted mostly from the audio. One of the main features
they chose consisted of a pitch deviation histogram, which charac-
terizes intonation behavior of a full performance in a low dimension.
Given that the performances were typically not associated with a mu-
sical score and that the singing was mixed with the accompaniment
and other background sounds, the authors built the histogram from
the Short-Time Fourier Transform amplitude peaks. A singer who
sings flat should have a histogram skewed to the left, and an active
vibrato will cause values to spread. Our feature extraction task is dif-
ferent from [4] because, as we describe below, we have access to the
musical scores of the vocals and because the audio sources are sepa-
rated. We can, therefore, apply a standard pitch detection algorithm
to each vocal track and compare the results to the musical score.
Comparison of performance pitch and musical score is also used by
[5] in the context of a tool for musical performance visualization.

2.2. Intonation studies

Pitch in a karaoke context and, more generally, in many scenarios
where a musical score is used, is modeled as the twelve discrete fre-
quencies per octave, evenly spaced in the logarithmic scale, that con-
stitute the equal-tempered scale. Quantitative and qualitative studies
on musical intonation of professional-level singers, however, indi-
cate frequent, deliberate deviations from the equal-tempered scale.
In particular, musicians often sing or play sharp relative to an accom-
paniment. [6] describes this phenomenon, citing [7, 8, 9]. Research
such as described in [10] finds much variety in musical interval sizes
both above and below the equal-tempered intervals in polyphonic
choral music. The results are interesting in our context because they
indicate that the pitch of good singers might not simply deviate from
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Fig. 1. Singing pitch analysis of sample performances with aligned MIDI. Two are in the clusters selected for “Intonation” dataset (top),
two in the remaining clusters (bottom). Much can be learned about the individual performances. The top two appear more tightly aligned to
the expected pitch, though the second plot contains harmonization at a major third below the musical score. The vibrato in the first plot is
particularly smooth, a sign of an advanced singer. The third plot shows frequent deviation from the score, while the fourth shows deviation
at the beginning and the end but accuracy in the middle, along with a smooth vibrato. Still, it is difficult visually determine from this data

format whether a performance sounds “in tune”.

a center pitch that is equal to the equal-tempered pitch we will find
in a musical score. Instead, singers may choose to center their pitch
at a different frequency. In this paper, we analyze the “Intonation”
dataset to check whether its amateur performances of mostly West-
ern popular music show similar tendencies to those described in the
studies.

3. DATA COLLECTION AND FEATURE EXTRACTION

We collected solo vocal tracks of karaoke performances from a very
large database. The first step was to filter for performances where
singers used a headset—avoiding incorporating noise from the back-
ing track into the recording. Given that we had access to a musical
MIDI score of expected pitches, we also used a simple heuristic to
filter for performances that were aligned enough with the score to
exclude scenarios such as people speaking instead of singing. We
kept this heuristic lenient enough that in-tune performances where
the singer used harmonization (sang different pitches than the ex-
pected melody) or made other intentional deviations from the MIDI
track wouldn’t be excluded. This pre-filtering provided 14403 per-
formances.

The next step was to summarize intonation patterns of a per-
formance using a low-dimensional set of features. The procedure is

shown in Figure 4 for two example performances. We first compared
the singing pitch to the expected pitch in the MIDI score. We com-
puted the singing pitch using the pYIN algorithm [11] on one minute
of audio, starting at 30 seconds to avoid silence, with one sample
(frame) per 11 milliseconds. pYIN has a high frequency resolution
because it is based in the time domain and refines results using linear
interpolation. Resolution is crucial for musical intonation, where a
few cents difference can determine whether a pitch sounds in or out
of tune. We shifted the MIDI score by a global constant to the octave
nearest to the singing pitch, which can differ based on gender, age,
and vocal type. We then computed the frame-wise absolute values of
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and MIDI score. Of this set of values, we kept the differences less
than or equal to 200 cents, equivalent to two semitones, in order to
focus the analysis on intonation behavior when the singer was close
to the expected pitch. Larger differences could be due to many rea-
sons, ranging from misalignment of notes in time to harmonization,
and might add undesired noise to the distributions.

the difference in cents |1200 * loga between the performance

Finally, we summarized these variable-length sequences of
frame-wise differences in a fixed, low-dimensional representation.
We generated a random sample of 10,000 differences with replace-
ment for every performance and kept 31 evenly spaced quantiles.
This empirically chosen number is large enough to effectively sum-
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Fig. 2. Global histograms of singing pitch deviations from the ex-
pected MIDI pitch in cents summed over 4702 performances in the
“Intonation” dataset and 4702 in the remaining clusters. The plot
is truncated at the top for readability. Scaled log histograms make
more noticeable the small peaks at 1200 cents in both directions,
due to octave deviations, common among singers. There is also, in-
terestingly, a larger number of deviations between 100 and 300 cents
in the positive direction than in the negative direction.

marize the characteristics of the distribution but produces a low
enough dimensionality for clustering.

4. SPECTRAL CLUSTERING

As suggested by the studies described in Section 2.2, an advanced
singer might produce wider pitch deviations, due to a pronounced
vibrato or expressive variations such as pitch bending, time shifting,
or harmonization, than a singer who sings close to the musical score
but is slightly off pitch. For this reason, we didn’t try to select per-
formances based on a simple metric like average distance of singing
pitch from the score. We also didn’t attempt to directly model “being
in tune”, instead adopting a semi-supervised approach that clusters
performances based on features generated from the deviations. We
then chose which cluster to keep by listening to samples from each.

We applied spectral clustering to the summarized performances
using the signless Laplacian matrix as the adjacency graph [12]. This
graph is based on selecting nearest neighbors (50 in our case). In
practice, we clustered approximately 5000 songs at a time into 3
or 4 clusters, depending on which value produced better Newman
modularity [13]. We then listened to 50 samples from every cluster
and subjectively determined the intonation of every performance by
evaluating it as “in tune”, “neutral”, “out of tune”. Consistently, one
cluster produced distinctly good results with roughly 75 per cent of
the songs classified as “in tune” and many of the remaining songs
being classified as “neutral” rather than “out of tune”, while the other
clusters had only a small percentage of performances classified as “in
tune”.

Keeping the samples from the selected clusters resulted in the
“Intonation” dataset of 4703 performances. Though not every per-
formance is in tune and not every performance in remaining clusters
is out of tune, a majority of in-tune performances in this dataset suf-
fices for many machine-learning applications.

5. ANALYSIS

The quality of the dataset is difficult to measure without a subjective
listening test. At this point, we do not attempt to directly show that
the “Intonation” dataset performances have better intonation than
those in the remaining clusters. Instead, we show a difference in
the intonation behavior distributions in the two collections. In order
to compare samples of the same size, we analyzed the full “Intona-
tion” dataset of size 4702 and a randomly selected a sample of the
same size of performances from the remaining clusters.

5.1. Data pre-processing for analysis

We computed the frame-wise differences between singing pitch and
MIDI score similarly to the way described in Section 3. Unlike be-
fore, we retained the sign instead of taking the absolute value in
order to know whether the pitch was sharp or flat. We also kept all
deviations instead of discarding those larger than 200 cents: At the
analysis stage, we are interested in intonation characteristics across
the whole performance, including the larger deviations due to har-
monization, expressive deviations, or inaccuracy.

To minimize misalignment before computing the deviations, we
applied Dynamic Time Warping (DTW) [14] to better align the MIDI
and singing pitch tracks. This algorithm stretches both signals in
time in a way that minimizes the total sum of distances between the
two. We used the algorithm as described in [15] and implemented
in [16]. To avoid distorting the pitch track, we forced the algorithm
to apply most time warping to the MIDI, which consists of straight
lines. We discarded frames where either the musical score or pitch
tracks were silent in order to only consider active frames in our anal-
ysis. Figure 1 shows four example performances after the initial pro-
cessing. The top two are from the selected clusters and the bottom
two from the remaining clusters.

5.2. Pitch deviation histogram

We compared the sequences of frame-wise pitch deviations from the
selected clusters to those from the remaining clusters. Similarly
to [4], we computed histograms of the deviations from the equal-
tempered MIDI score summed over all performances in each group,
normalizing them to have the same total counts. Figure 2 shows that
the “Intonation” dataset deviations are more concentrated very close
to O than those in the remaining clusters. The same can be observed
at other harmonization peaks, 1200 cents (an octave) and other val-
ues in between, indicating more intentional harmonization and less
accidental deviation. There is also, interestingly, a higher concentra-
tion of counts between 100 and 300 cents especially in the positive
direction, maybe due to harmonization and expressive suspensions.

5.3. Pitch deviation probabilities

We examined whether we could find intonation tendencies like those
described in Section 2.2. Unlike in the data used in the cited studies,
the backing tracks are fixed recordings, so all pitch adjustments hap-
pen in the voice. This can affect the pitch deviation distributions. In
Figure 3, we examine deviations within 100 cents because a larger
deviation corresponds a different note. Both collections tend towards
positive deviations, but the tail is lighter in the selected clusters.

We quantify this result by estimating the probability of positive
versus negative deviations within various absolute deviation thresh-
olds using bootstrapping [17] with 10000 iterations, as shown in Ta-
ble 1. We choose ranges of cents that are of interest when comparing
theoretical musical intervals generated using the equal temperament
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Fig. 3. Comparison of positive and negative deviation counts for
cents ranging from 1 to 100 (omitting 0) for both datasets. In both
groups, positive deviations are more common than negative ones.
The “Intonation” dataset deviations are more concentrated around
Zero.

| Results from “Intonation” dataset (4702 performances) ‘

Cents range | Positive/negative deviation ratio | Var

1to2 0.500 0.001
2to 16 0.506 0.001

1 to 100 0.532 0.002
100 to 300 0.727 0.002

| Results from other performances (9701 performances)

Cents range | Positive/negative deviation ratio | Var

1to2 0.500 0.001
2to 16 0.509 0.001

1 to 100 0.541 0.002
100 to 300 0.700 0.002

Table 1. Probability estimates of positive versus negative frame-
wise deviations of singing pitch from the equal-tempered MIDI
score, computed using bootstrapping. The analysis was performed
within different ranges of interest. When the deviation is less than
100 cents, the singer did not sing a different note. We found a par-
ticularly strong tendency towards positive deviations in the range of
100 to 300 cents.

versus other intonation systems (e.g., Pythagorean or Just intona-
tion, described in the cited studies). Use of other intonation systems
would explain deviations of 2 to 16 cents. We first examine the ra-
tio of deviations less than 2 cents. As expected, a probability of
0.5 shows no significant preference for sharp versus flat intonation.
Within 2 to 16 cents, we get 0.51. However, the largest probabili-
ties occur at larger values, 300 cents. We cannot determine whether
this deviation is a desirable effect or due to an unknown factor. The
tendencies are observed in both collections.

6. DATASET DESCRIPTION AND APPLICATIONS

The “Intonation” dataset contains the full unmixed and unprocessed
vocal tracks of 4702 performances. It consists of 474 unique ar-
rangements by 3556 singers. It also contains the pYIN pitch analy-
sis and multiple backing track features for the range of 30 to 90 sec-

Difference between MIDI and pYIN, two performances
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Fig. 4. Data pre-processing steps for two example performances.
The blue performance was selected for the “Intonation” dataset and
the red performance was not. The first plot shows the frame-wise
differences in cents between the measured singing pitch and equal-
tempered MIDI score. We computed the absolute values of these
differences and discarded those whose deviation was larger than 200
cents. The second plot shows random samples of 10,000 from the
frame-wise difference lists, sorted by distance. The blue curve shows
less deviation from the expected pitch than the red. The third plot
shows 31 quantiles summarizing the curve in the second plot in a
lower dimension.

onds: constant-Q transform, chroma, mel-frequency cepstrum coef-
ficients, root mean square error, and onset, all computed using the Li-
brosa [16] package. Metadata of the performances is included. The
dataset has applications ranging from the study of singing style in the
context of karaoke performances, with optional study of user meta-
data, to machine learning. For example, the vocal tracks can be used
for informed source separation, an approach similar to separation by
humming, described in [18] and [19]. Similarly, the dataset can be
used for training a query-by-humming system, in a similar way to
[20]. The vocal pitch tracks and backing track features can be used
to study autotuning applications trained on real-world singing and
develop a proof-of-concept model for vocal pitch correction [21].

7. CONCLUSION

We present a semi-automatic process for the task of searching
through a large database of amateur karaoke performances for sam-
ples with a tendency for good musical intonation. The approach can
be applied in other situations where a researcher needs to extract
a subset of data samples from a large database. We show that the
set of collected performances has a different intonation behavior
distribution than the set of remaining performances. The resulting
public dataset, “Intonation”, of 4702 performances is available on
the Stanford CCRMA DAMP website. The “Intonation” dataset
can be used for music information retrieval applications like query-
by-humming systems. Analyzing the dataset, we find that pitch
deviations between the measured singing pitch and the MIDI score
are more often positive than negative, implying that singers more
often choose higher frequencies.
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