
EFFICIENT AND SCALABLE NEURAL RESIDUAL WAVEFORM CODING
WITH COLLABORATIVE QUANTIZATION

Kai Zhen1,2, Mi Suk Lee3, Jongmo Sung3, Seungkwon Beack3, Minje Kim1,2

1Indiana University, Luddy School of Informatics, Computing, and Engineering, Bloomington, IN
2Indiana University, Cognitive Science Program, Bloomington, IN

3Electronics and Telecommunications Research Institute, Daejeon, South Korea
zhenk@iu.edu, lms@etri.re.kr, jmseong@etri.re.kr, skbeack@etri.re.kr, minje@indiana.edu,

ABSTRACT

Scalability and efficiency are desired in neural speech codecs, which
supports a wide range of bitrates for applications on various devices.
We propose a collaborative quantization (CQ) scheme to jointly
learn the codebook of LPC coefficients and the corresponding resid-
uals. CQ does not simply shoehorn LPC to a neural network, but
bridges the computational capacity of advanced neural network
models and traditional, yet efficient and domain-specific digital sig-
nal processing methods in an integrated manner. We demonstrate
that CQ achieves much higher quality than its predecessor at 9 kbps
with even lower model complexity. We also show that CQ can
scale up to 24 kbps where it outperforms AMR-WB and Opus. As
a neural waveform codec, CQ models are with less than 1 million
parameters, significantly less than many other generative models.

Index Terms— Speech coding, linear predictive coding, deep
neural network, residual learning, model complexity

1. INTRODUCTION

Speech coding quantizes speech signals into a compact bit stream
for efficient transmission and storage in telecommunication systems
[1, 2]. The design of speech codecs is to address the trade-off among
low bitrate, high perceptual quality, low complexity and delay, etc [3,
4]. Most speech codecs are classified into two categorizes, vocoders
and waveform coders [5]. Vocoders use few parameters to model
the human speech production process, such as vocal tract, pitch fre-
quency, etc [6]. In comparison, waveform coders compress and re-
construct the waveform to make the decoded speech similar to the in-
put as “perceptually” as possible. Conventional vocoders are compu-
tationally efficient and can encode speech at very low bitrates, while
waveform coders support a much wider bitrate range with scalable
performance and are more robust to noise.

In both conventional vocoders and waveform coders, linear
predictive coding (LPC) [7], an all-pole linear filter, serves a crit-
ical component, as it can efficiently model power spectrum with
only a few coefficients through Levinson-Durbin algorithm [6]. For
vocoders, the LPC residual is then modeled as a synthetic excitation
signal with a pitch pulse train or white noise component [8]. On the
other hand, for waveform coders, such as Opus [9], Speex [10] and
AMR-WB [11], the residual is directly compressed to the desired
bitrate before being synthesized to the decoded signal.

This work was supported by Institute for Information & Communica-
tions Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (2017-0-00072, Development of Audio/Video Coding and Light
Field Media Fundamental Technologies for Ultra Realistic Tera-media).

LPC is useful in modern neural speech codecs, too. While gen-
erative autoregressive models, such as WaveNet, have greatly im-
proved the synthesized speech quality [12], it comes at the cost of
model complexity during the decoding process [13]. For example,
vector quantized variational autoencoders (VQ-VAE) with WaveNet
decoder achieves impressive speech quality at a very low bitrate
of 1.6 kbps, yet with approximately 20 million trainable parame-
ters [14]. To make such a system more efficient, LPC can still un-
load computational overheads from neural networks. LPCNet com-
bines WaveRNN [15] and LPC to shrink down the complexity to
3 GFLOPS which enables real-time coding [16, 17]. Nevertheless,
LPCNet, as a vocoder, provides a decent performance at 1.6 kbps,
but does not scale up to transparent quality. In terms of the neu-
ral waveform coder, CMRL [18] uses LPC as a pre-processor and
a variation of [19] to model the LPC residual to match the state-of-
the-art speech quality with only 0.9 million parameters. However,
both LPCNet and CMRL take LPC another blackbox shoehorned
into advanced neural networks. Using LPC as a deterministic pre-
processor can be sub-optimal, as its bit allocation is pre-defined and
not integrated to model training.

To better incorporate LPC with neural networks towards scalable
waveform coding with low model complexity, we propose a collabo-
rative quantization (CQ) scheme where LPC quantization process is
trainable. Coupled with the other neural network autoencoding mod-
ules for the LPC residual coding, the proposed quantization scheme
learns the optimal bit allocation between the LPC coefficients and
the other neural network code layers. With the proposed collabora-
tive training scheme, CQ outperforms its predecessor at 9 kbps, and
can scale up to match the performance of the state-of-the art codec at
24 kbps with a much lower complexity than many generative mod-
els. We first illustrate relevant techniques which CQ is based upon
in Section 2, and then explain how they are tailored to our model
design in Section 3. In Section 4, we evaluate the model in multiple
bitrates in terms of objective and subjective measures. We conclude
in Section 5.

2. PRELIMINARIES

2.1. End-to-end speech coding autoencoders

A 1D-CNN architecture on the time-domain samples serves the de-
sired lightweight autoencoder (AE) for end-to-end speech coding,
where the model complexity is a major concern [19, 18]. As shown
in Table 1, the encoder part consists of four bottleneck ResNet stages
[20], a downsampling convolutional layer to halve the feature map
size in the middle, and then a channel compression layer to create

Table 1. Architecture of the 1D-CNN autoencoders. Input and out-
put tensors sizes are represented by (width, channel), while the ker-
nel shape is (width, in channel, out channel).

Layer Input shape Kernel shape Output shape
Change channel (512, 1) (9, 1, 100) (512, 100)

1st bottleneck (512, 100)
(9, 100, 20)

×2(9, 20, 20)
(9, 20, 100)

(512, 100)

Downsampling (512, 100) (9, 100, 100) (256, 100)

2nd bottleneck (256, 100)
(9, 100, 20)

×2(9, 20, 20)
(9, 20, 100)

(256, 100)

Change channel (256, 100) (9, 100, 1) (256, 1)

Change channel (256, 1) (9, 1, 100) (256, 100)

1st bottleneck (256, 100)
(9, 100, 20)

×2(9, 20, 20)
(9, 20, 100)

(256, 100)

Upsampling (256, 100) (9, 100, 100) (512, 50)

2nd bottleneck (512, 50)
(9, 50, 20)

×2(9, 20, 20)
(9, 20, 50)

(512, 50)

Change channel (512, 50) (9, 50, 1) (512, 1)

a real-valued code vector of 256 dimensions. The decoder is with a
mirrored architecture, but its upsampling layer recovers the original
frame size (512 samples) from the reduced code length (256).

2.2. Soft-to-hard (softmax) quantization

To compress speech signals, a core component of this AE is the
trainable quantizer which learns a discrete representation of the code
layer in the AE. Out of the recent neural network-compatible quanti-
zation schemes, such as VQ-VAE [21] and soft-to-hard quantization
[22], we focus on soft-to-hard quantization, namely softmax quanti-
zation as in the other end-to-end speech coding AEs [19, 18]. Given
an input frame x ∈ RS of S samples, the output from the encoder is
h = FEnc(x), each is a 16-bit floating-point value. Given J = 32
centroids represented as a vector b ∈ RJ , softmax quantization maps
each sample in h to one of J centroids, such that each quantized
sample can be represented by log2 J bits (5 bits when J = 32).

This quantization process uses a hard assignment matrix Ahard ∈
RI×J , where I and J are the dimension of the code and the vector
of centroids, respectively. It can be calculated based on the element-
wise Euclidean distance matrix D ∈ RI×J .

Ahard(i, j) =

{
1 if D(i, j) = minj′ D(i, j′)
0 otherwise . (1)

Then, the quantization can be done by assigning the closest centroid
to each of h’s elements: h̄ = Ahardb. However, this process is
not differentiable and blocks the backpropagation error flow during
training. Instead, a soft-to-hard assignment is adopted as follows:

(a) Calculate the distance matrix D ∈ RI×J between the elements
of h and b.

(b) Calculate the soft-assignment matrix from the dissimilarity ma-
trix using the softmax function Asoft = softmax(−αD), where
the softmax function applies to each row of Asoft to turn it into
a probability vector, e.g., Asoft(i, j) holds the highest probabil-
ity iff hi is most similar to bj . Therefore, during the training
phase Asoftb approximates hard assignments and is fed to the
decoder as the input code, while still differentiable. The addi-
tional variable α controls the softness of the softmax function,

h
<latexit sha1_base64="jN2CIztE/CAXbSLC1L3Zsiwo4HI=">AAACA3icZZDLSgMxFIYzXmu9VV26CRbBRWlnqqArKejCZUXbCraUTHqmjc1lSDJiGbp06VYfwp249UF8Bl/C9LKw9kDgO3/yH07+MObMWN//9hYWl5ZXVjNr2fWNza3t3M5u3ahEU6hRxZW+C4kBziTULLMc7mINRIQcGmH/YnTfeARtmJK3dhBDS5CuZBGjxDrpphn22rm8X/THhechmEIeTavazv00O4omAqSlnBhzH/ixbaVEW0Y5DLPNxEBMaJ904d6hJAJMKx2vOsSHTungSGl3pMVj9a8jJcKYgQgL2IEgtlfAoXC2EZrZ0TY6a6VMxokFSSeTo4Rjq/Doo7jDNFDLBw4I1cwth2mPaEKtiyPbHBvTUs24riSYfIA+E6VLreJQPZU6EBUN2GHWpRP8z2Ie6uVicFwsX5/kK+fTnDJoHx2gIxSgU1RBV6iKaoiiLnpBr+jNe/bevQ/vc/J0wZt69tBMeV+/EsuXGQ==</latexit>

Asoft
<latexit sha1_base64="zsT4Z0Wqu5wOKzyYbfwFW+G+7tE=">AAACEXicZZDLSgMxFIYz3q23qks3wSK4kHZGBV2JoguXCrYKTimZ9IzG5jIkZ8Qy9ClcutWHcCdufQKfwZcwvSy8HAh850/+w8mfZFI4DMPPYGx8YnJqema2NDe/sLhUXl5pOJNbDnVupLFXCXMghYY6CpRwlVlgKpFwmXSO+/eX92CdMPoCuxk0FbvRIhWcoZda5aU4OWrFCA9YOJNir1WuhNVwUPQ/RCOokFGdtcpfcdvwXIFGLplz11GYYbNgFgWX0CvFuYOM8Q67gWuPmilwzWKweI9ueKVNU2P90UgH6k9HwZRzXZVsUQ+K4e0WTZS39dH9Ho3pfrMQOssRNB9OTnNJ0dD+t2lbWOAoux4Yt8IvR/kts4yjD6cUD4xFre58V1NC30FHqNqJNVliHmptSKsOsFfy6UR/s/gPje1qtFPdPt+tHB6Mcpoha2SdbJKI7JFDckrOSJ1wkpMn8kxegsfgNXgL3odPx4KRZ5X8quDjG5hDnM8=</latexit>

b>
<latexit sha1_base64="h8u4mp6fmg93j1fR0j0FbDimchA=">AAACCHicZZDLahsxFIY16S11b06yzEbUFLow9oxTaFfBkCyyTKC+gMc1knzGVq3LIJ0pMYNfIMtu04foLmSbt8gz9CUqXxZ1fUDwnV/6D0c/z5X0GMeP0d6Tp8+ev9h/WXn1+s3bd9WDw663hRPQEVZZ1+fMg5IGOihRQT93wDRX0OOzs+V97wc4L635ivMchppNjMykYBikfsr5txRtPqrW4ka8KroLyQZqZFOXo+qfdGxFocGgUMz7QRLnOCyZQykULCpp4SFnYsYmMAhomAY/LFf7LuiHoIxpZl04BulK/ddRMu39XPM6DaAZTuuU62Bbot8ejdmXYSlNXiAYsZ6cFYqipcvf0rF0IFDNAzDhZFiOiilzTGDIpJKujGWz40PX1NJ8h5nUzXNnc26vm2PIGh5wUQnpJP9nsQvdViM5abSuPtXap5uc9skxeU8+koR8Jm1yQS5JhwiiyE9yS35FN9Hv6C66Xz/dizaeI7JV0cNfGu6ZUg==</latexit>

Asoftb
<latexit sha1_base64="XWSfjjLdbQM8bk9Zj3S+ctVcfo4=">AAACFHicZZDNThsxFIU9FCiEvzQs2VhElVigZCYglVWVChZdUomQSEwU2c4dMPHPyL6DEo3yGl12Sx+iO8S2e56Bl6gTsoByJUvfPfa5uj48V9JjHD9FSx+WV1Y/rq1XNja3tneqn2qX3hZOQEdYZV2PMw9KGuigRAW93AHTXEGXj05n9907cF5ac4GTHPqaXRuZScEwSINqLeXfBinCGEtvM5ymnA+q9bgRz4u+h2QBdbKo80H1OR1aUWgwKBTz/iqJc+yXzKEUCqaVtPCQMzFi13AV0DANvl/Od5/Sz0EZ0sy6cAzSufraUTLt/UTzQxpAM7w5pFwH2wz929GYnfRLafICwYiXyVmhKFo6+zkdSgcC1SQAE06G5ai4YY4JDPlU0rmxbHZ86JpamlsYSd08czbndtwcQtbwgNNKSCf5P4v3cNlqJEeN1o/jevvrIqc1skf2yQFJyBfSJt/JOekQQcbkF7knv6Of0Z/oIXp8eboULTy75E1Ff/8B7GKeDQ==</latexit>

Ahardb
<latexit sha1_base64="nTfw0aTM+sZPqgR82HvYoujs75Q=">AAACFHicZZDLbhMxFIY9BUqb0hLCshuLqFIXUTKTIsEKBcGCZZHIRepEke0507rxZWSfQYlGeQ2WbOlDdIfYsu8z9CVwLgvaHMnS59/+j875eaGkxzi+i3aePH22+3xvv3bw4vDoZf1VY+Bt6QT0hVXWjTjzoKSBPkpUMCocMM0VDPn00/J9+B2cl9Z8w3kBY80ujcylYBikSb2R8o+TFGGG1RVz2SLlfFJvxu14VXQbkg00yabOJ/X7NLOi1GBQKOb9RRIXOK6YQykULGpp6aFgYsou4SKgYRr8uFrNvqAnQclobl04BulK/d9RMe39XPMWDaAZXrUo18G2RP+wNebvx5U0RYlgxLpzXiqKli43p5l0IFDNAzDhZBiOirAzExjyqaUrY9Xp+3DraGmuYSp157OzBbezTgZ52wMuaiGd5HEW2zDotpOzdvfr22bvwyanPXJM3pBTkpB3pEe+kHPSJ4LMyE/yi9xEP6Lb6Hf0Z/11J9p4XpMHFf39B7z0nfA=</latexit>

Ahard
<latexit sha1_base64="KVzer4APHD2JCyIZipsVjyP5lWA=">AAACEXicZZDLSgMxFIYz3q23qks3wSK4kHZGBV2JoguXClYFp5RM5ozG5jIkZ8Qy9ClcutWHcCdufQKfwZcwrV14ORD48if/4Zw/yaVwGIYfwcjo2PjE5NR0ZWZ2bn6hurh07kxhOTS5kcZeJsyBFBqaKFDCZW6BqUTCRdI57L9f3IF1wugz7ObQUuxai0xwhl5qVxfi5KAdI9xjecNs2mtXa2E9HBT9D9EQamRYJ+3qZ5waXijQyCVz7ioKc2yVzKLgEnqVuHCQM95h13DlUTMFrlUOBu/RNa+kNDPWH410oP50lEw511XJBvWgGN5s0ER5Wx/d79aY7bZKofMCQfPvzlkhKRraX5umwgJH2fXAuBV+OMr9woyjD6cSD4xlo+n8raGEvoWOUI0ja/LE3DdSyOoOsFfx6UR/s/gP55v1aKu+ebpd298b5jRFVsgqWScR2SH75JickCbhpCCP5Ik8Bw/BS/AavH1/HQmGnmXyq4L3L2ksnLI=</latexit>

Hard
Assignment
(Test Time)

Soft
Assignment

(Training Time)

(Test Time)

(Training Time)

F
E
n
c (x

)
<latexit sha1_base64="n/v0uL4BFnkOhi4s07fVcxGFDuE=">AAACF3icZZDPaxNBFMdnq9W6tpoqnrwMDUIKIdmtQj1JoSoeUzBpIBvC7ORtOs38WGbeSsKSP8Rjr/pH9Fa8evRv8J/oZN2DbR4MfOY78328901zKRxG0Z9g68HD7UePd56ET3f3nj1v7L8YOFNYDn1upLHDlDmQQkMfBUoY5haYSiWcp/PT9fv5N7BOGP0VlzmMFZtpkQnO0EuTxquEM/l5kiAssPyk+aqVpIvDSaMZdaKq6CbENTRJXb1J428yNbxQoJFL5twojnIcl8yi4BJWYVI4yBmfsxmMPGqmwI3LavwVfeOVKc2M9UcjrdT/HSVTzi1V2qYeFMOLNk2Vt63R3W2N2ftxKXReIPhdqs5ZISkaul6eToUFjnLpgXEr/HCUXzDLOPqIwqQylt2+87euEvoS5kJ1P1qTp2bRnULWcYCr0KcT389iEwZHnfht5+jsXfPkQ53TDnlNDkiLxOSYnJAvpEf6hJOSXJEf5GfwPbgOboJf/75uBbXnJblTwe9bX5qevw==</latexit> F

D
ec (h̄

)
<latexit sha1_base64="AoUXEz9I6+r1335rwMM7eHG6sSE=">AAACHXicZZDNThsxFIU9QPkJLQS6ZGMRIVEJJTMBqawQEqhiSaUGkJgosp07xMQ/I/tORTSaBU/Cstv2IbqrukU8Ay+BE7Lg50iWPh/7XNmH50p6jOOHaGZ27sP8wuJSbfnjp5XV+tr6mbeFE9ARVll3wZkHJQ10UKKCi9wB01zBOR8ejc/Pf4Lz0pofOMqhq9mVkZkUDIPVq2+kgqlvvRThBstjENV2ypkrUz6ovvTqjbgZT0TfQzKFBpnqtFd/TPtWFBoMCsW8v0ziHLslcyiFgqqWFh5yJobsCi4DGqbBd8vJJyq6FZw+zawLyyCduC8TJdPejzTfoQE0w8EO5TrExuhfj8Zsv1tKkxcIRjxPzgpF0dJxBbQvHQhUowBMOBkeR8WAOSYwFFVLJ8Gy1fFh19LSXMNQ6taxszm3N60+ZE0PWNVCO8nbLt7DWbuZ7Dbb3/cahwfTnhbJBtkk2yQhX8khOSGnpEMEuSW/yG/yJ7qL/kb/ov/PV2eiaeYzeaXo/gli9KFq</latexit>

Fig. 1. An example of the softmax quantization process.

F (i)
Dec(h̄

(i))
<latexit sha1_base64="wlBTiGPrBcM8o3wo+r7/KGVTnfU=">AAACKXicZZDPThsxEMa90AINLU3psRerESJIKNmlSOWEkEAVRyo1gMSmke3MEhP/WdmziGi1j8CTcOwVHqK3lmuPfYk6YQ8FRrL0m8/+RuOP50p6jOPf0dz8i5cLi0uvGsuv36y8bb5bPfa2cAJ6wirrTjnzoKSBHkpUcJo7YJorOOHj/en9ySU4L635hpMc+pqdG5lJwTBIg+Z6Kpj6MkgRrrA8AFF9L9tyo2qnnLky5aO63xg0W3EnnhV9DkkNLVLX0aD5Nx1aUWgwKBTz/iyJc+yXzKEUCqpGWnjImRizczgLaJgG3y9nH6roWlCGNLMuHIN0pv7vKJn2fqL5Jg2gGY42KdfBNkX/eDRmO/1SmrxAMOJhclYoipZO46BD6UCgmgRgwsmwHBUj5pjAEFojnRnLbs+HrquluYCx1N0DZ3Nur7pDyDoesGqEdJKnWTyH461O8qmz9XW7tbdb57REPpCPpE0S8pnskUNyRHpEkGvyg9ySu+gm+hn9iu4fns5Ftec9eVTRn39d+6YC</latexit>

F (i)
Enc(x

(i))
<latexit sha1_base64="zaAmDsVyvoGrkNhJW6vFUqiJ7Eg=">AAACI3icZZDLThsxFIY93ErDLW2X3RgipCChZAYqlVWF1IJYUokAEhMij3MmmPgyss+gRKNZ8yRddlseoruKDYs+QV+izpAFlyNZ+s5v/0c+f5JJ4TAMH4KZ2bn5hTeLb2tLyyura/V370+dyS2HDjfS2POEOZBCQwcFSjjPLDCVSDhLhl8n92c3YJ0w+gTHGXQVG2iRCs7QS736esyZPOzFCCMsDjQvL4um2CqbcTJ6pK1evRG2wqroa4im0CDTOu7V/8V9w3MFGrlkzl1EYYbdglkUXEJZi3MHGeNDNoALj5opcN2iWqWkm17p09RYfzTSSn3qKJhybqySbepBMbzaponytgm656Mx3esWQmc5gt+rmpzmkqKhkyBoX1jgKMceGLfCf47yK2YZRx9XLa6MRbvjfNdWQl/DUKj2N2uyxIzafUhbDrCs+XSil1m8htOdVrTb2vn+qbH/ZZrTIvlINkiTROQz2SdH5Jh0CCe35Cf5Re6CH8Hv4E9w//h0Jph6PpBnFfz9Dz9To1c=</latexit>

h̄(i)
<latexit sha1_base64="uYs8IDJlEOfjfMNw3NbNWdsPQvU=">AAACEXicZZDLSgMxFIYz3q23qks3wSIoSDujgq5E0IXLClYFp5YkPWNjcxmSjFiGeQqXbvUh3Ilbn8Bn8CVMLwsvBwLf+ZP/cPLTVHDrwvAzGBufmJyanpktzc0vLC6Vl1curM4MgwbTQpsrSiwIrqDhuBNwlRogkgq4pN3j/v3lPRjLtTp3vRSaktwqnnBGnJda5aWYEpPHtFPc5Jt8q2iVK2E1HBT+D9EIKmhU9Vb5K25rlklQjgli7XUUpq6ZE+M4E1CU4sxCSliX3MK1R0Uk2GY+WLzAG15p40Qbf5TDA/WnIyfS2p6k29iDJK6zjan0tj7a36NdctDMuUozB4oNJyeZwE7j/rdxmxtgTvQ8EGa4Xw6zDjGEOR9OKR4Y81rD+q4mubqDLpe1E6NTqh9qbUiqFlxR8ulEf7P4Dxc71Wi3unO2Vzk6HOU0g9bQOtpEEdpHR+gU1VEDMZShJ/SMXoLH4DV4C96HT8eCkWcV/arg4xvd4pxb</latexit>

x̂(i)
<latexit sha1_base64="nok23eHIv+b8IOmbHvuZSSNQGvA=">AAACEXicZZDPbhMxEMa9hdKQUhrgyMUiQgpSlOwWpHJCleDAsUikiZTdRl5nNnHjPyt7FiVa7VP02Cs8BDfUa5+AZ+AlcLY5EDKSpd989jcaf2kuhcMw/B3sPXi4/+ig8bh5+OTo6XHr2fMLZwrLYcCNNHaUMgdSaBigQAmj3AJTqYRhuvi4vh9+A+uE0V9xlUOi2EyLTHCGXpq0juM5wzJOl9Vl2RFvqkmrHfbCuuguRBtok02dT1p/4qnhhQKNXDLnxlGYY1Iyi4JLqJpx4SBnfMFmMPaomQKXlPXiFX3tlSnNjPVHI63Vfx0lU86tVNqlHhTDeZemytvW6LZHY/Y+KYXOCwTN7ydnhaRo6PrbdCoscJQrD4xb4ZejfM4s4+jDaca1sewPnO/6SugrWAjV/2RNnpplfwpZzwFWTZ9O9H8Wu3Bx0ove9k6+vGuffdjk1CAvySvSIRE5JWfkMzknA8JJQW7Id/IjuA5+Br+C2/une8HG84JsVXD3FwV9nHM=</latexit>

x(i�1)
<latexit sha1_base64="CbHhV4wBabFb+vqoKQnfZoLsmac=">AAACDXicZZDLSgMxFIYzXmu9VV26CRahgrYzKuhKCrpwqWBtwY4lk57R2FzGJCOWYZ7BpVt9CHfi1mfwGXwJ09qFlwOB7/zJfzj5o4QzY33/wxsbn5icmi7MFGfn5hcWS0vL50almkKDKq50KyIGOJPQsMxyaCUaiIg4NKPe4eC+eQfaMCXPbD+BUJAryWJGiXVSmLWj+/wyq7CtYCPvlMp+1R8W/g/BCMpoVCed0me7q2gqQFrKiTEXgZ/YMCPaMsohL7ZTAwmhPXIFFw4lEWDCbLh0jted0sWx0u5Ii4fqT0dGhDF9EW1iB4LY600cCWcboPk92sb7YcZkklqQ9HtynHJsFR58GXeZBmp53wGhmrnlML0mmlDrgim2h8as1jCuqwkmb6DHRO1IqyRS97UuxFUDNi+6dIK/WfyH8+1qsFPdPt0t1w9GORXQKlpDFRSgPVRHx+gENRBFt+gRPaFn78F78V69t++nY97Is4J+lff+BTh6mvM=</latexit>

F (i�1)
Enc (x(i�1))

<latexit sha1_base64="p21K1MtRIr5HdkpDvT8bamnCb10=">AAACJ3icZZDLShxBFIarTbxkvGSMy2yKDMIIOtOtgq5E0IQsDWRUsMehuua0VqYuTdVpmaHpJ/BJXLrVh8guJMusfQlrOhPwcqDgO3/Vf6jzJ5kUDsPwTzD15u30zOzcu9r8wuLS+/ryh2Nncsuhw4009jRhDqTQ0EGBEk4zC0wlEk6SwcH4/uQKrBNGf8dRBl3FLrRIBWfopV59NeZMfunFCEMsPmtenhdNsRGtlc04Gf7ntV69EbbCquhriCbQIJM66tUf4r7huQKNXDLnzqIww27BLAouoazFuYOM8QG7gDOPmilw3aJap6SrXunT1Fh/NNJKfeoomHJupJJ16kExvFynifK2MbrnozHd7RZCZzmC362anOaSoqHjMGhfWOAoRx4Yt8J/jvJLZhlHH1ktroxFu+N811ZC/4CBUO1Da7LEDNt9SFsOsKz5dKKXWbyG481WtNXa/Lbd2N+b5DRHPpJPpEkiskP2yVdyRDqEk2tyS+7IfXAT/Ax+Bb//PZ0KJp4V8qyCv48xM6Q7</latexit>

F (i�1)
Dec (h̄(i�1))

<latexit sha1_base64="wz05wI/QWphZDJyAMuPCXG5zQzc=">AAACLXicZZBPSxwxGMYzVltdbbutRy/BRVip3Z2xhXoSoSI9KnRVcLZLkn3HjZs/Q/KOuAzzIfwkHnvVD9FDQXr14Jcwuy6l1gcCvzzJ85I8PFfSYxz/jmZezM69fDW/UFtcev3mbf3d+0NvCyegI6yy7pgzD0oa6KBEBce5A6a5giM+/Do+PzoH56U133GUQ1ezUyMzKRgGq1f/kAqm9nopwgWWuyCqH2VTfkzWq2bKmStTPvjrrPfqjbgVT0SfQzKFBplqv1e/T/tWFBoMCsW8P0niHLslcyiFgqqWFh5yJobsFE4CGqbBd8vJpyq6Fpw+zawLyyCduP8mSqa9H2m+QQNohoMNynWIjdE/HY3ZVreUJi8QjHicnBWKoqXjSmhfOhCoRgGYcDI8jooBc0xgKK6WToJlu+PDrq2lOYOh1O1dZ3NuL9p9yFoesKqFdpL/u3gOh5ut5FNr8+BzY2d72tM8WSGrpEkS8oXskG9kn3SIIJfkJ7kmN9FV9Cu6jf48Xp2Jppll8kTR3QNXCabm</latexit>

h̄(i�1)
<latexit sha1_base64="uakR3rrEMgcK5bnm9sx1HZK82AQ=">AAACE3icZZDLSgMxFIYz3q23qks3wSIoaDujgq5E0IVLBauCU0uSnrGxuQxJRi3DPIZLt/oQ7sStD+Az+BKmtQsvBwLf+ZP/cPLTVHDrwvAjGBoeGR0bn5gsTU3PzM6V5xfOrM4MgzrTQpsLSiwIrqDuuBNwkRogkgo4p52D3v35LRjLtTp13RQaklwrnnBGnJea5fmYEpPHtF1c5at8I1ormuVKWA37hf9DNIAKGtRxs/wZtzTLJCjHBLH2MgpT18iJcZwJKEpxZiElrEOu4dKjIhJsI++vXuAVr7Rwoo0/yuG++tORE2ltV9J17EES117HVHpbD+3v0S7ZbeRcpZkDxb4nJ5nATuPex3GLG2BOdD0QZrhfDrM2MYQ5H08p7hvzWt36ria5uoEOl7VDo1Oq72stSKoWXFHy6UR/s/gPZ5vVaKu6ebJd2d8b5DSBltAyWkUR2kH76Agdozpi6A49oif0HDwEL8Fr8Pb9dCgYeBbRrwrevwDLJJzN</latexit>

F (i+1)
Dec (h̄(i+1))

<latexit sha1_base64="35mgrcEBcDjPIsyb0BIJzEs/3Ck=">AAACLXicZZBPSxtBGMZn1baa2ja2Ry+DoRBRkt20oKciVEqPFowKbgwzk3fNmPmzzLwrhmU/hJ+kx17bD9GDIL168Et0EoP454GB3zwzz8vMw3MlPcbxVTQ3v/Di5avFpdrr5Tdv39VX3h94WzgBXWGVdUeceVDSQBclKjjKHTDNFRzy0dfJ+eE5OC+t2cdxDj3NTo3MpGAYrH59IxVMfeunCBdY7oKoTsqm3EjWq2bKmStTPrx31vv1RtyKp6LPIZlBg8y016/fpgMrCg0GhWLeHydxjr2SOZRCQVVLCw85EyN2CscBDdPge+X0UxX9GJwBzawLyyCdug8TJdPejzXfpAE0w+Em5TrEJugfj8Zsu1dKkxcIRtxNzgpF0dJJJXQgHQhU4wBMOBkeR8WQOSYwFFdLp8Gy3fVh19bSnMFI6vauszm3F+0BZC0PWNVCO8nTLp7DQaeVfGp1fnxu7HyZ9bRIVskaaZKEbJEd8p3skS4R5JL8Ir/Jn+hn9De6jv7dXZ2LZpkP5JGim/9QYabi</latexit>

h̄(i+1)
<latexit sha1_base64="ovIlRlj3zaFnalrxQae+1j1GIfc=">AAACE3icZZDLSgMxFIYz3q23qks3wSIoSjujgq5E0IVLBauCU0uSnrGxuQxJRi3DPIZLt/oQ7sStD+Az+BKmtQsvBwLf+ZP/cPLTVHDrwvAjGBoeGR0bn5gsTU3PzM6V5xfOrM4MgzrTQpsLSiwIrqDuuBNwkRogkgo4p52D3v35LRjLtTp13RQaklwrnnBGnJea5fmYEpPHtF1c5at8PVormuVKWA37hf9DNIAKGtRxs/wZtzTLJCjHBLH2MgpT18iJcZwJKEpxZiElrEOu4dKjIhJsI++vXuAVr7Rwoo0/yuG++tORE2ltV9IN7EES197AVHpbD+3v0S7ZbeRcpZkDxb4nJ5nATuPex3GLG2BOdD0QZrhfDrM2MYQ5H08p7hvzWt36ria5uoEOl7VDo1Oq72stSKoWXFHy6UR/s/gPZ5vVaKu6ebJd2d8b5DSBltAyWkUR2kH76Agdozpi6A49oif0HDwEL8Fr8Pb9dCgYeBbRrwrevwDH5JzL</latexit>

F (i+1)
Enc (x(i+1))

<latexit sha1_base64="cfWxnjTSRpAdGlIygENcJHh48QI=">AAACJ3icZZDNShxBFIWrTYxm1DjGZTZFBmFEmelWQVciaEKWBjIq2ONQXXNby6mfpuq2zND0E/gkLt3qQ2QXkmXWvoQ1nQn4c6Hgu6fqXOqeJJPCYRj+CabevJ1+NzP7vjY3v/Bhsb708ciZ3HLocCONPUmYAyk0dFCghJPMAlOJhONksD++P74C64TRP3CUQVexcy1SwRl6qVdfiTmTX3sxwhCLL5qXZ0VTrEWrZTNOhv95tVdvhK2wKvoaogk0yKQOe/WHuG94rkAjl8y50yjMsFswi4JLKGtx7iBjfMDO4dSjZgpct6jWKemKV/o0NdYfjbRSnzoKppwbqWSdelAML9ZporxtjO75aEx3uoXQWY7gd6smp7mkaOg4DNoXFjjKkQfGrfCfo/yCWcbRR1aLK2PR7jjftZXQlzAQqn1gTZaYYbsPacsBljWfTvQyi9dwtNGKNlsb37cae7uTnGbJJ/KZNElEtske+UYOSYdwck1uyR25D26Cn8Gv4Pe/p1PBxLNMnlXw9xEql6Q3</latexit>

x̂(i+1)
<latexit sha1_base64="EsRjlfna9wpBYY82QT6BQxROM5o=">AAACE3icZZDPbhMxEMa9LaVlKZDAkYtFhJSKKNkNldoTqgQHjkUiaaRuGnmd2caN/6zs2bbRah+jR67wENwQVx6AZ+AlcNI9EDKSpd989jcaf2kuhcMo+h1sbT/Yebi79yh8vP/k6bNG8/nQmcJyGHAjjR2lzIEUGgYoUMIot8BUKuEsnb9f3p9dg3XC6M+4yGGs2KUWmeAMvTRpNJMZwzJJb6uLsi3exAfVpNGKutGq6CbENbRIXaeTxp9kanihQCOXzLnzOMpxXDKLgkuowqRwkDM+Z5dw7lEzBW5crlav6GuvTGlmrD8a6Ur911Ey5dxCpR3qQTGcdWiqvG2Jbn00ZsfjUui8QND8fnJWSIqGLj9Op8ICR7nwwLgVfjnKZ8wyjj6eMFkZy97A+a6nhL6CuVC9D9bkqbntTSHrOsAq9OnE/2exCcN+N37b7X86bJ28q3PaIy/JK9ImMTkiJ+QjOSUDwskN+UK+km/BXfA9+BH8vH+6FdSeF2Stgl9/Ae+gnOM=</latexit>

x̂(i�1)
<latexit sha1_base64="GT6puxW08HSXuM3zXRX9TkrFFrI=">AAACE3icZZDPThsxEMa9QCldCiTtsReLCIlKIdkNlcqpQqKHHkEigMSmkdeZJSb+s7JnC9FqH4Mj1/Yheqt67QP0GXgJnLCH0oxk6Tef/Y3GX5pL4TCK/gZLyysvVl+uvQrXX29sbjWab86cKSyHPjfS2IuUOZBCQx8FSrjILTCVSjhPJ0ez+/NvYJ0w+hSnOQwUu9IiE5yhl4aNZjJmWCbpbfW13BV78ftq2GhFnWhedBHiGlqkruNh4yEZGV4o0Mglc+4yjnIclMyi4BKqMCkc5IxP2BVcetRMgRuU89UruuOVEc2M9Ucjnav/OkqmnJuqtE09KIbjNk2Vt83QPR+N2cGgFDovEDR/mpwVkqKhs4/TkbDAUU49MG6FX47yMbOMo48nTObGstt3vusqoa9hIlT3szV5am67I8g6DrAKfTrx/1kswlmvE+93eicfWoef6pzWyDuyTXZJTD6SQ/KFHJM+4eSG3JPv5EdwF/wMfgW/n54uBbXnLXlWwZ9H8uCc5Q==</latexit>

x(i�1)�x̂(i�1)
<latexit sha1_base64="n59H7NWspVAxkg47kxv7z+D05hc=">AAACK3icZZDPThsxEMa9tIU0FBrKkYtDhAQSJLuA1J6qSHDgCBIBJDZEXmeWuPGflT1bEa32GfokPXKFh+BUxJUTL4ETcigwkqXffONvZH9JJoXDMPwXzHz4+Gl2rvK5Ov9lYfFrbenbiTO55dDhRhp7ljAHUmjooEAJZ5kFphIJp8lwbzw//Q3WCaOPcZRBV7FLLVLBGXqpV9so4uSqvCjWxVZcjzbKuB7XPcUDhm8mvVojbIaTou8hmkKDTOuwV3uK+4bnCjRyyZw7j8IMuwWzKLiEshrnDjLGh+wSzj1qpsB1i8mXSrrmlT5NjfVHI52o/zsKppwbqWSTelAMB5s0Ud42Rvd6NaY/uoXQWY6g+cvmNJcUDR0HQvvCAkc58sC4Ff5xlA+YZRx9bNV4YixaHee7lhL6FwyFau1bkyXmqtWHtOkAy6pPJ3qbxXs42W5GO83to91G++c0pwpZIatknUTkO2mTA3JIOoSTP+Sa3JDb4G9wF9wHDy9XZ4KpZ5m8quDxGfnApQ8=</latexit>

x(i)�x̂(i)
<latexit sha1_base64="iRAVQ/BF2/aw2Tz3fLM8QVL8/A4=">AAACI3icZZDNThsxFIU9KW3T9C9tl904RJWolCYzaaV2hSLRBUuQCCBl0sjj3CEm/hnZd6pEo1nzJF2yhYforuqGBU/AS+CELAhcydbn43uu7JNkUjgMw6ug8mTj6bPn1Re1l69ev3lbf/f+0JnccuhzI409TpgDKTT0UaCE48wCU4mEo2S6s7g/+g3WCaMPcJ7BULETLVLBGXppVG8UcTIrfxVb4nMZN+LGF79NGN5TR/Vm2A6XRR9DtIImWdXeqH4Tjw3PFWjkkjk3iMIMhwWzKLiEshbnDjLGp+wEBh41U+CGxfIrJf3klTFNjfVLI12q9x0FU87NVdKiHhTDSYsmytsW6NZHY/pjWAid5Qia301Oc0nR0EUQdCwscJRzD4xb4R9H+YRZxtHHVYuXxqLTd/7UUUKfwlSozk9rssTMOmNI2w6wrPl0oodZPIbDbjv62u7uf2v2tlc5VclHskm2SES+kx7ZJXukTzg5I+fkglwGf4K/wb/g/11rJVh5PpC1Cq5vAbS4owk=</latexit>

x(i+1)
<latexit sha1_base64="JQZNnbG9Ij6I2L+aNXfiTD8cDS4=">AAACDXicZZDLSgMxFIYz9V5vVZdugkVQlHZGBV2JoAuXClYL7Vgy6RmNzWVMMmIZ5hlcutWHcCdufQafwZcwvSysHgh850/+w8kfJZwZ6/tfXmFsfGJyanqmODs3v7BYWlq+NCrVFGpUcaXrETHAmYSaZZZDPdFARMThKuoc9+6vHkAbpuSF7SYQCnIjWcwosU4Ks2b0mF9nG2wr2MxbpbJf8fuF/0MwhDIa1lmr9N1sK5oKkJZyYkwj8BMbZkRbRjnkxWZqICG0Q26g4VASASbM+kvneN0pbRwr7Y60uK/+dmREGNMV0TZ2IIi93caRcLYemtHRNj4IMyaT1IKkg8lxyrFVuPdl3GYaqOVdB4Rq5pbD9JZoQq0LptjsG7NqzbiuKpi8gw4T1ROtkkg9VtsQVwzYvOjSCf5m8R8udyrBbmXnfK98dDjMaRqtojW0gQK0j47QKTpDNUTRPXpGL+jVe/LevHfvY/C04A09K2ikvM8fNTqa8Q==</latexit>x(i)

<latexit sha1_base64="ilTu/7KfjEOWVfpBCEtJy0ULZKQ=">AAACC3icZZDLSgMxFIYz9V5vVZdugkVQKO1MFXQlBV24rGCr0FbJpGfa2FyGJCOWYR7BpVt9CHfi1ofwGXwJ08vCy4HAd/7kP5z8YcyZsb7/6eVmZufmFxaX8ssrq2vrhY3NplGJptCgiit9HRIDnEloWGY5XMcaiAg5XIWD09H91T1ow5S8tMMYOoL0JIsYJdZJrbQdPmQ36R7bz24LRb/sjwv/h2AKRTSt+m3hq91VNBEgLeXEmFbgx7aTEm0Z5ZDl24mBmNAB6UHLoSQCTCcdr5zhXad0caS0O9LisfrTkRJhzFCEJexAENsv4VA42wjN79E2Ou6kTMaJBUknk6OEY6vw6MO4yzRQy4cOCNXMLYdpn2hCrYsl3x4b00rDuK4imLyDAROVM63iUD1UuhCVDdgs79IJ/mbxH5rVcnBQrl4cFmsn05wW0TbaQXsoQEeohs5RHTUQRQo9oWf04j16r96b9z55mvOmni30q7yPb06ImoE=</latexit>

Fig. 2. The CMRL residual coding scheme.

i.e., limα→∞Asoft = Ahard. We use α = 300 to minimize the
gap between Asoft and Ahard.

(c) At testing time, Ahard replaces Asoft by turning the largest prob-
ability in a row into one and zeroing the others. Ahardb creates
the quantized code h̄.

Fig. 1 summarizes the softmax quantization process.

2.3. Cross-module residual learning (CMRL) pipeline

CMRL serializes a list of AEs as its building block modules to enable
residual learning among them (Fig. 2). Instead of relying on one AE,
CMRL serializes a list of AEs as building block modules, where the
i-th AE takes its own input x(i) and is trained to predict it x̂(i) ≈
x(i). Except for the heading AE, the input of i-th AE x(i) is the
residual signal, or the difference between the input speech x and
the sum of what has not been reconstructed by the preceding AEs:
x(i) = x−

∑i−1
j=1 x̂

(j). CMRL decentralizes the effort of optimizing
one gigantic neural network; lowers the model complexity in terms
of trainable parameters to less than 1 million, which brings neural
audio coding algorithms closer to smart devices with limited energy
supply and storage space. The AEs in CMRL use the same model
architecture in Section 2.1 and quantization scheme in Section 2.2.

3. COLLABORATIVE QUANTIZATION

In the CMRL pipeline, LPC module serves a pre-processor with a
fixed bitrate of 2.4 kbps. While it can effectively model the spectral
envelope, it may not fully benefit the consequent residual quantiza-
tion. For example, for a frame that LPC cannot effectively model,
CQ can weigh more on the following AEs to use more bits, and vice
versa. In this section, we break down the LPC process to make its
quantization module trainable, along with the other AE modules in
CMRL which are to recover the LPC residual as best as possible.

0 256 512 768 1024

(a) Cross-frame windowing

256 768512

(b) Sub-frame windowing

256 768512

(c) Synthesis windowing

Fig. 3. LPC windowing schemes

High-pass filter

Input speech

Pre-emphasis
filter

Calculate LPC
coefficients

LPC coefficients
quantization

Calculate LPC
residuals

LPC residuals

Coded LPC
Coefficients

Asoft
<latexit sha1_base64="XbEmm7Pu59SAR8PFk8KNLA2Zkjw=">AAACDXicbVBNS8NAFNzUr1q/oh69BEvBU0lEUG9VLx4rGCu0IWw2m3bpJht2X8QS8gu8+Fe8eFDx6t2b/8ZtG1BbBxaGmfeYfROknCmw7S+jsrC4tLxSXa2trW9sbpnbOzdKZJJQlwgu5G2AFeUsoS4w4PQ2lRTHAaedYHgx9jt3VComkmsYpdSLcT9hESMYtOSbjUYvUzTFZIj7NA/iotYLBA/zs8LvAb2HXIkICt+s2017AmueOCWpoxJt3/zshYJkMU2AcKxU17FT8HIsgRFOdchPaFfTBMdUefnknMJqaCW0IiH1S8CaqL83chwrNYoDPRljGKhZbyz+53UziE68nCVpBjQh06Ao4xYIa9yNFTJJCfCRJphIpv9qkQGWmIBusKZLcGZPnifuYfO06Vwd1VvnZRtVtIf20QFy0DFqoUvURi4i6AE9oRf0ajwaz8ab8T4drRjlzi76A+PjG70anMY=</latexit><latexit sha1_base64="XbEmm7Pu59SAR8PFk8KNLA2Zkjw=">AAACDXicbVBNS8NAFNzUr1q/oh69BEvBU0lEUG9VLx4rGCu0IWw2m3bpJht2X8QS8gu8+Fe8eFDx6t2b/8ZtG1BbBxaGmfeYfROknCmw7S+jsrC4tLxSXa2trW9sbpnbOzdKZJJQlwgu5G2AFeUsoS4w4PQ2lRTHAaedYHgx9jt3VComkmsYpdSLcT9hESMYtOSbjUYvUzTFZIj7NA/iotYLBA/zs8LvAb2HXIkICt+s2017AmueOCWpoxJt3/zshYJkMU2AcKxU17FT8HIsgRFOdchPaFfTBMdUefnknMJqaCW0IiH1S8CaqL83chwrNYoDPRljGKhZbyz+53UziE68nCVpBjQh06Ao4xYIa9yNFTJJCfCRJphIpv9qkQGWmIBusKZLcGZPnifuYfO06Vwd1VvnZRtVtIf20QFy0DFqoUvURi4i6AE9oRf0ajwaz8ab8T4drRjlzi76A+PjG70anMY=</latexit><latexit sha1_base64="XbEmm7Pu59SAR8PFk8KNLA2Zkjw=">AAACDXicbVBNS8NAFNzUr1q/oh69BEvBU0lEUG9VLx4rGCu0IWw2m3bpJht2X8QS8gu8+Fe8eFDx6t2b/8ZtG1BbBxaGmfeYfROknCmw7S+jsrC4tLxSXa2trW9sbpnbOzdKZJJQlwgu5G2AFeUsoS4w4PQ2lRTHAaedYHgx9jt3VComkmsYpdSLcT9hESMYtOSbjUYvUzTFZIj7NA/iotYLBA/zs8LvAb2HXIkICt+s2017AmueOCWpoxJt3/zshYJkMU2AcKxU17FT8HIsgRFOdchPaFfTBMdUefnknMJqaCW0IiH1S8CaqL83chwrNYoDPRljGKhZbyz+53UziE68nCVpBjQh06Ao4xYIa9yNFTJJCfCRJphIpv9qkQGWmIBusKZLcGZPnifuYfO06Vwd1VvnZRtVtIf20QFy0DFqoUvURi4i6AE9oRf0ajwaz8ab8T4drRjlzi76A+PjG70anMY=</latexit><latexit sha1_base64="XbEmm7Pu59SAR8PFk8KNLA2Zkjw=">AAACDXicbVBNS8NAFNzUr1q/oh69BEvBU0lEUG9VLx4rGCu0IWw2m3bpJht2X8QS8gu8+Fe8eFDx6t2b/8ZtG1BbBxaGmfeYfROknCmw7S+jsrC4tLxSXa2trW9sbpnbOzdKZJJQlwgu5G2AFeUsoS4w4PQ2lRTHAaedYHgx9jt3VComkmsYpdSLcT9hESMYtOSbjUYvUzTFZIj7NA/iotYLBA/zs8LvAb2HXIkICt+s2017AmueOCWpoxJt3/zshYJkMU2AcKxU17FT8HIsgRFOdchPaFfTBMdUefnknMJqaCW0IiH1S8CaqL83chwrNYoDPRljGKhZbyz+53UziE68nCVpBjQh06Ao4xYIa9yNFTJJCfCRJphIpv9qkQGWmIBusKZLcGZPnifuYfO06Vwd1VvnZRtVtIf20QFy0DFqoUvURi4i6AE9oRf0ajwaz8ab8T4drRjlzi76A+PjG70anMY=</latexit>

(regularization)

Fig. 4. The trainable LPC analyzer

Trainable LPC
Analyzer LPC Coefficients

In
pu

t s
pe

ec
h

LPC Residuals

CMRL

Estimated
LPC Residuals

LPC Synthesizer

Synthesized output

De-emphasis
filtering

Fig. 5. Overview of the CQ system.

3.1. Trainable LPC analyzer

Our goal is to incorporate LPC analysis into the CMRL pipeline so
that it outsources the LPC coefficient quantization to the neural net-
work training algorithm. The trainable LPC analyzer is derived from
AMR-WB [23] with several necessary adjustments to be compatible
with neural network computational paradigm.
High-pass filtering and pre-emphasizing: Given the input speech,
we first adopt high-pass filtering and pre-emphasizing as in [23]. A
high-pass filter is employed with a cut off frequency of 50 Hz. The
pre-emphasis filter isHemp(z) = 1−0.68z−1, and the de-emphasis
filter is employed to remove artifacts in the high frequencies.
Data windowing for LPC coefficients calculation: The pre-emphasis
filtered utterances are segmented to frames of 1024 samples. Each
frame is windowed before LPC coefficients are calculated. As shown
in Fig. 3 (a), the symmetric window has its weight emphasized on
the middle 50% samples: first 25% part is the left half of a Hann
window with 512 points; the middle 50% is a series of ones; and the
rest 25% part is the right half of the Hann window. Then, the linear
prediction is conducted on the windowed frame in time domain s.
For the prediction of the t-th sample, ŝ(t) =

∑
i ais(t− i), where

ai is the i-th LPC coefficient. The frames are with 50% overlap.
The LPC order is set to be 16. We use Levinson Durbin algorithm
[6] to calculate LPC coefficients. They are are represented as line
spectral pairs (LSP) [24] which are more robust to quantization.
Trainable LPC quantization: We then employ the trainable softmax
quantization scheme to LPC coefficients in LSP domain, to represent
each coefficient with its closest centroid, as described in Section 2.2.
For each windowed frame x, hLPC = FLPC(x) gives corresponding
LPC coefficients in the LSP representation. The rest of the process is
the same with the softmax quantization process, although this time
the LPC-specific centroids bLPC should be learned and be used to
construct the soft assignment matrix. In practice, we set LPC order
to be 16, and the number of centroids to be 256 (i.e., 8 bits). Hence,
the size of the soft and hard assignment matrices is 16×256, each of
whose rows is a probability vector and a one-hot vector, respectively.
Data windowing for LPC residual calculation: We use a sub-frame
windowing technique to calculate residuals (Fig. 3 (b)). For a given
speech frame and its quantized LPC coefficients, we calculate resid-
uals for each sub-frame, individually. The middle 50% of the 1024
samples, for example, [256:768] for the first analysis frame that cov-
ers [0:1024] and [768:1280] for the second frame of [512:1536], is
decomposed into seven sub-frames, each with the size 128 and 50%
overlap. Out of the seven sub-frames, the middle five are windowed
by a Hann function with 128 points; the first and last frames are
asymmetrically windowed, as shown in Fig. 3 (b). The residual is
calculated with the seven sub-frames on the middle 512 samples,

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

with differential coding

Fig. 6. Differential coding enables a more centralized distribution

which amount to 50% of the frame. Hence, given the 50% analysis
frame overlap, there is no overlap between residual segments.

3.2. Residual coding

The LPC residual, calculated from the trainable LPC analyzer (Fig.
4), is compressed by the 1D-CNN AEs as described in Section 2.3.
In this work, we employ differential coding [25] to the output of en-
coders, h = [h0, h1, · · · , hm−1] where m is the length of code per
frame for each AE. Hence, the input scalar to the softmax quanti-
zation is ∆hi = hi − hi−1. Consequently, the quantization starts
from a more centralized real-valued “code” distribution (Fig.6). As
illustrated in Fig. 5, both the quantization of LPC coefficients and
residual coding with CMRL are optimized together. With this de-
sign, the purpose of LPC analysis is not just to minimize the residual
signal energy as much as possible [26], but to find a pivot which also
facilitates the residual compression from following CMRL modules.

3.3. Model training

According to the CMRL pipeline, the individual AEs can be trained
sequentially by using the residual of the previous module as the input
of the AE and the target of prediction. Once all the AEs are trained,
finetuning step follows to improve the total reconstruction quality.
This section discusses the loss function we used for training each of
the AEs as well as for finetuning. The loss function consists of the
reconstruction error terms and regularizers:

L = λ1T (y||ŷ) + λ2F(y||ŷ) + λ3Q(Asoft) + λ4E(Asoft) (2)

Given that the input of CQ is in time domain, we minimize the
loss in both time and frequency domains. The time domain error,
T (y||ŷ), is measured by mean squared error (MSE). F(y||ŷ) com-
pensates what is not captured by the non-perceptual T (y||ŷ) term
by measuring the loss in mel-scale frequency domain. Four different
mel-filter banks are specified with the size of 128, 32, 16 and 8, to
enable a coarse-to-fine differentiation.
Q(Asoft) and E(Asoft) are regularizers for softmax quanti-

zation. For the soft assignment matrix Asoft as defined in Sec-
tion 2.2, Q(Asoft) is defined as

∑
i,j(
√

Asoft(i, j) − 1)/I , to

Table 2. MOS-LQO scores computed from PESQ-WB
AMR-WB Opus LPC-CMRL CQ

∼9 kbps 3.48 3.42 3.01 3.69
∼16 kbps 3.99 4.30 3.26 3.98
∼20 kbps 4.09 4.43 3.67 4.08
∼24 kbps 4.17 4.47 4.15 4.17

ensure that the soft assignment is close to its hard assignment
version. E(Asoft) calculates the entropy of softmax-quantized bit
strings, to control the bitrate. First, the frequency of each kernel
is calculated by summing the rows of the soft assignment matrix:
Asoft(·, j) =

∑
iA(i, j). The corresponding probability distri-

bution over the kernels, denoted as p, is on how often a code is
assigned to each kernel: pj = A(·, j)/(IJ). The entropy is, there-
fore, E(Asoft) = −

∑
j pj log2(pj). As firstly proposed in [19],

by adjusting λ4, the model is finetuned to the range of the desired
bitrate. We find that applying Huffman coding on grouped sample
pairs (two adjacent samples per pair) gives a better compression
ratio, as it further utilizes the temporal structure preserved in the
quantized residual signals. Note that there is no need to allocate bits
for model parameters as in autoregressive models [27].

4. EXPERIMENTS

4.1. Experimental Settings

We consider four bitrate cases 9, 16, 20, and 24 kbps, with the sam-
ple rate of 16 kHz. The training set contains 2.6 hours of speech
from 300 speakers randomly selected from the TIMIT training set.
50 speakers are randomly selected from the test set. At test time,
each frame has 512 samples with an overlap of 32 samples. The
overlap region is windowed by Hann function (Fig.3(c)). For 24
kbps, we cascade the LPC module and two AEs as in [18], but we
use only one AE for the LPC residual coding for other three bitrates.
For 16 and 20 kbps cases, the code layer is downsampled with a con-
volutional layer of stride 2; for the 9 kbps case, we use two down-
sampling layers of stride 2. We use Adam optimizer [28] with the
batch size of 128, learning rate of 0.0002 for 30 epochs, followed by
finetuning until the entropy is within the target range.

Recent works on generative model based speech synthesis sys-
tems [16, 13] have reported that PESQ [29] or its successor POLQA
[30] cannot accurately evaluate the synthesized speech quality. In
fact, we also find that there is a discrepancy between PESQ and the
actual MOS. Still, we report MOS-LQO scores in Table 2 as the pro-
posed method is based on waveform reconstruction.

We conduct two MUSHRA-like [31] sessions corresponding to
two bitrate settings. Each session includes ten trials on gender-
balanced utterances randomly chosen from the test set. A low-pass
anchor at 4kHz and the hidden reference signal are included in both
settings, with eleven audio experts as the subjects. The lower bitrate
setting refers to the performance around 9 kbps, including AMR-
WB [23] at 8.85 kbps, Opus [9] at 9 kbps, LPC-CMRL [18] at 9 and
16 kbps, and CQ at 9 kbps. The higher bitrate session uses decoded
signals from codes with around 24 kbps bitrate. The competing mod-
els are AMR-WB at 23.85 kbps, Opus at 24 kbps, the proposed CQ
method, and the LPC-CMRL counterpart at 24 kbps.

4.2. Experimental Results

First, we can see that CQ outperforms LPC-CMRL at the same bi-
trate, especially in low bitrate setting (Fig. 7). In higher bitrate set-

LP
C

-C
M

R
L

9

kb
ps

LP
C

-C
M

R
L

15

.8
5

kb
ps

O
pu

s

9
kb

ps

A
M

R
-W

B

8.
85

 k
bp

s

H
id

de
n

re
fe

re
nc

e
25

6
kb

ps

C
Q

 9
 k

bp
s LP

4k

(a) ∼9 kbps

H
id

de
n

re
fe

re
nc

e
25

6
kb

ps

C
Q

 2
4

kb
ps

LP
C

-C
M

R
L

24
 k

bp
s

O
pu

s
24

 k
bp

s

A
M

R
-W

B
 2

3.
85

 k
bp

s

LP
4k

(b) ∼24 kbps

Fig. 7. MUSHRA results in box-plots (Orange solid lines represent
medians, and green dashed lines represent means).

ting, both LPC-CMRL and CQ outperform AMR-WB and Opus in
the MUSHRA test. None of these methods add very audible arti-
facts. One explanation for the result is that AMR-WB does not code
all 8kHz wide bandwidth, but up to 7kHz, while our model main-
tains the energy of decoded signals at high frequencies, and there-
fore yield less-muffled speech. However, as the bitrate decreases,
some human subjects tend to be more negative towards the artifacts
(from LPC-CMRL) which become audible than the moderately muf-
fled speech (from AMR-WB). That explains why LPC-CMRL is less
favored than AMR-WB at low bitrate. As was expected, when the
LPC coefficient quantization is collaboratively learned along with
residual coding, the artifact is suppressed—CQ-9 outperforms LPC-
CMRL-9 with a noticeable margin1.

4.3. Complexity

We use the number of trainable parameters to measure the model
complexity, as it determines the floating point operation rate, mem-
ory space, and execution time, etc. Each AE, used in CQ and CMRL,
contains 0.45 million parameters (Table 1). We use one AE for CQ-
16 and CQ-20 kbps cases, and two AEs for the 24 kbps case. The
AE in CQ-9 kbps is 0.67 million parameters as it contains two down-
sampling and upsampling layers. Admittedly, the decoder of CQ is
still more complex than the conventional codecs, but it is much sim-
pler than the other WaveNet vocoder-based coding systems , e.g., the
VQ-VAE with WaveNet has 20 million parameters, although it gives
impressive speech quality with only 1.6 kbps.

5. CONCLUSION

We proposed a lightweight and scalable waveform neural codec, in-
tegrading merits from both advanced end-to-end neural network ar-
chitectures and conventional DSP techniques. With collaborative
quantization (CQ), LPC coefficient quantization becomes a train-
able component to be jointly optimized with the residual quantiza-
tion. This helps CQ outperform its predecessor and Opus at 9 kbps,
and show comparable performance to AMR-WB at 8.85 kbps. The
method is with much lower complexity in terms of the amount of pa-
rameters than other competitive neural speech coding models. The
source code is publicized under a MIT license2.

1Decoded samples are available at https://saige.sice.
indiana.edu/research-projects/neural-audio-coding/

2Available at https://github.com/cocosci/NSC/

https://saige.sice.indiana.edu/research-projects/neural-audio-coding/
https://saige.sice.indiana.edu/research-projects/neural-audio-coding/
https://github.com/cocosci/NSC/

6. REFERENCES

[1] K. Brandenburg and G. Stoll, “ISO/MPEG-1 Audio: A generic
standard for coding of high-quality digital audio,” Journal of
the Audio Engineering Society, vol. 42, no. 10, pp. 780–792,
1994.

[2] M. Hasegawa-Johnson and A. Alwan, “Speech coding: Funda-
mentals and applications,” Wiley encyclopedia of telecommu-
nications, 2003.

[3] J. D. Gibson, “Speech coding methods, standards, and appli-
cations,” IEEE Circuits and Systems Magazine, vol. 5, no. 4,
pp. 30–49, 2005.

[4] D. Choudhary and A. Kumar, “Study and performance of amr
codecs for gsm,” International Journal of Advanced Research
in Computer and Communication Engineering, vol. 3, no. 10,
pp. 8105–8110, 2014.

[5] A. S. Spanias, “Speech coding: A tutorial review,” Proceed-
ings of the IEEE, vol. 82, no. 10, pp. 1541–1582, 1994.

[6] F. Itakura, “Early developments of LPC speech coding tech-
niques,” in icslp, 1990, pp. 1409–1410.

[7] Douglas O’Shaughnessy, “Linear predictive coding,” IEEE
potentials, vol. 7, no. 1, pp. 29–32, 1988.

[8] T. Moriya, R. Sugiura, Y. Kamamoto, H. Kameoka, and
N. Harada, “Progress in lpc-based frequency-domain audio
coding,” APSIPA Transactions on Signal and Information Pro-
cessing, vol. 5, 2016.

[9] J. M. Valin, G. Maxwell, T. B. Terriberry, and K. Vos, “High-
quality, low-delay music coding in the opus codec,” arXiv
preprint arXiv:1602.04845, 2016.

[10] J. M. Valin, “Speex: A free codec for free speech,” arXiv
preprint arXiv:1602.08668, 2016.

[11] ITU-T G.722.2:, “Wideband coding of speech at around 16
kbit/s using adaptive multi-rate wideband (AMR-WB),” 2003.

[12] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and
K. Kavukcuoglu, “WaveNet: A generative model for raw au-
dio.,” Speech Synthesis Workshop, vol. 125, 2016.

[13] W. B. Kleijn, F. S. C. Lim, A. Luebs, J. Skoglund, F. Stimberg,
Q. Wang, and T. C. Walters, “WaveNet based low rate speech
coding,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2018,
pp. 676–680.

[14] Y. Li C. Garbacea, A. van den Oord, “Low bit-rate speech
coding with VQ-VAE and a wavenet decoder,” in Proceedings
of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2019.

[15] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio syn-
thesis,” arXiv preprint arXiv:1802.08435, 2018.

[16] J.-M. Valin and J. Skoglund, “LPCNet: Improving neural
speech synthesis through linear prediction,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2019.

[17] J. M. Valin and J. Skoglund, “A real-time wideband neu-
ral vocoder at 1.6 kb/s using lpcnet,” arXiv preprint
arXiv:1903.12087, 2019.

[18] K. Zhen, J. Sung, M. S. Lee, S. Beack, and M. Kim, “Cas-
caded cross-module residual learning towards lightweight end-
to-end speech coding,” in Proceedings of the Annual Confer-
ence of the International Speech Communication Association
(Interspeech), 2019.

[19] S. Kankanahalli, “End-to-end optimized speech coding with
deep neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 770–778.

[21] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural
discrete representation learning,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2017, pp. 6306–6315.

[22] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Tim-
ofte, L. Benini, and L. V. Gool, “Soft-to-hard vector quantiza-
tion for end-to-end learning compressible representations,” in
Advances in Neural Information Processing Systems (NIPS),
2017, pp. 1141–1151.

[23] B. Bessette, R. Salami, R. Lefebvre, M. Jelinek, J. Rotola-
Pukkila, J. Vainio, H. Mikkola, and K. Jarvinen, “The adaptive
multirate wideband speech codec (AMR-WB),” IEEE Trans-
actions on Speech and Audio Processing, vol. 10, no. 8, pp.
620–636, 2002.

[24] Frank Soong and B Juang, “Line spectrum pair (lsp) and
speech data compression,” in ICASSP’84. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing. IEEE, 1984, vol. 9, pp. 37–40.

[25] P Cummiskey, Nikil S Jayant, and JL Flanagan, “Adaptive
quantization in differential pcm coding of speech,” Bell System
Technical Journal, vol. 52, no. 7, pp. 1105–1118, 1973.

[26] KK Paliwal and BS Atal, “Vector quantization of lpc param-
eters,” Speech and Audio Coding for Wireless and Network
Applications, vol. 224, pp. 191, 2012.

[27] W. B. Kleijn and A. Ozerov, “Rate distribution between model
and signal,” in Proceedings of 2001 IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics (WAS-
PAA), 2007, pp. 243–246.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[29] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, “Perceptual evaluation of speech quality (PESQ)-a new
method for speech quality assessment of telephone networks
and codecs,” in in Proc. of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP). IEEE,
2001, vol. 2, pp. 749–752.

[30] John G Beerends, Christian Schmidmer, Jens Berger, Matthias
Obermann, Raphael Ullmann, Joachim Pomy, and Michael
Keyhl, “Perceptual objective listening quality assessment
(POLQA), the third generation ITU-T standard for end-to-
end speech quality measurement part i—temporal alignment,”
Journal of the Audio Engineering Society, vol. 61, no. 6, pp.
366–384, 2013.

[31] ITU-R Recommendation BS 1534-1, “Method for the subjec-
tive assessment of intermediate quality levels of coding sys-
tems (MUSHRA),” 2003.

	 Introduction
	 Preliminaries
	 End-to-end speech coding autoencoders
	 Soft-to-hard (softmax) quantization
	 Cross-module residual learning (CMRL) pipeline

	 Collaborative quantization
	 Trainable LPC analyzer
	 Residual coding
	 Model training

	 Experiments
	 Experimental Settings
	 Experimental Results
	 Complexity

	 Conclusion
	 References

