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ABSTRACT

In speech enhancement, an end-to-end deep neural network con-
verts a noisy speech signal to a clean speech directly in the time
domain without time-frequency transformation or mask estimation.
However, aggregating contextual information from a high-resolution
time domain signal with an affordable model complexity still re-
mains challenging. In this paper, we propose a densely connected
convolutional and recurrent network (DCCRN), a hybrid architec-
ture, to enable dual-staged temporal context aggregation. With the
dense connectivity and cross-component identical shortcut, DCCRN
consistently outperforms competing convolutional baselines with an
average STOI improvement of 0.23 and PESQ of 1.38 at three SNR
levels. The proposed method is computationally efficient with only
1.38 million parameters. The generalizability performance on the
unseen noise types is still decent considering its low complexity, al-
though it is relatively weaker comparing to Wave-U-Net with 7.25
times more parameters.

Index Terms— End-to-end, speech enhancement, context ag-
gregation, residual learning, dilated convolution, recurrent network

1. INTRODUCTION

Monaural speech enhancement can be described as a process to ex-
tract the target speech signal by suppressing the background interfer-
ence in the speech mixture in the single-microphone setting. There
have been various classic methods, such as spectral subtraction [1],
Wiener-filtering [2] and non-negative matrix factorization [3], to re-
move the noise without leading to objectionable distortion or adding
too much artifacts, such that the denoised speech is of decent quality
and intelligibility. Recently, the deep neural network (DNN), a data-
driven computational paradigm, has been extensively studied thanks
to its powerful parameter estimation capacity and correspondingly
promising performance [4][5][6][7].

DNNs formulate monaural speech enhancement either as mask
estimation [8] or end-to-end mapping [9]. In terms of mask estima-
tion, DNNs usually take acoustic features in time-frequency (T-F)
domain to estimate a T-F mask, such as ideal binary mask (IBM)
[10], etc. In comparison, both the input and output of end-to-end
speech enhancement DNNs can be T-F spectrograms, or even time
domain signals directly without any feature engineering.
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In both mask estimation and end-to-end mapping DNNs, dilated
convolution [11] serves a critical role to aggregate contextual infor-
mation with the enlarged receptive field. Gated residual network
(GRN) [12] employs dilated convolutions to accumulate context in
temporal and frequency domains, leading to a better performance
than a long short-term memory (LSTM) cell-based model [13]. In
end-to-end setting, WaveNet [14] and its variations also adopt dilated
convolution in speech enhancement.

For real-time systems deployed in resource-constrained environ-
ment, however, the oversized receptive field from dilated convolu-
tion can cause a severe delay issue. Although causal convolution can
enable real-time speech denoising [15], it performs less well com-
paring to the dilated counterpart [12]. Besides, when the receptive
field is too large, the amount of padded zeroes in the beginning of
the sequence and a large buffer size for online processing can be a
burdensome spatial complexity for a small device. Meanwhile, re-
current neural networks (RNN) can also aggregate context through
a frame-by-frame processing without relying on the large receptive
field. However, the responsiveness of a practical RNN system, such
as LSTM [13], comes at the cost of the increased number of model
parameters, which is neither as easy to train nor resource-efficient.
There has been effort to apply dilated DenseNet [16] or a hybrid ar-
chitecture to source separation [17], the mechanism to enable dual-
staged context aggregate through the heterogeneous model topology
has not been addressed.

To achieve efficient end-to-end monaural speech enhancement,
we propose a densely connected convolutional and recurrent network
(DCCRN), which conducts dual-level context aggregation. The first
level of context aggregation in DCCRN is achieved by a dilated 1D
convolutional neural network (CNN) component, encapsulated in
the DenseNet architecture [18]. It is followed by a compact gated
recurrent unit (GRU) component [19] to further utilize the contex-
tual information in the “many-to-one” fashion. Note that we also
employ a cross-component identical shortcut linking the output of
DenseNet component to the output of GRU component to reduce the
complexity of the GRU cells. We also propose a specifically de-
signed training procedure for DCCRN that trains the CNN and RNN
components separately, and then finetune the entire model. Experi-
mental results show that the hybrid architecture of dilated DenseNet
and GRU in DCCRN consistently outperforms other CNN variations
with only one level of context aggregation on untrained speakers.
Our model is computationally efficient and provides reasonable gen-
eralizability to untrained noises with only 1.38 million parameters.

We describe the proposed method in Section 2, and then provide
experimental validation in Section 3. We conclude in Section 4.
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Fig. 1: A schematic diagram of the DCCRN training procedure including dilated DenseNet and GRU components.

2. MODEL DESCRIPTION

2.1. Context aggregation with dilated DenseNet

Residual learning has become a critical technique to tackle the gradi-
ent vanishing issue when tuning a deep convolutional neural network
(CNN), such that the deep CNN can achieve better performance but
with a lower model complexity. ResNet illustrates a classic way
to enable residual learning by adding identical shortcuts across bot-
tleneck structures [20]. Although the bottleneck structure includes
direct paths to feedforward information from earlier layers to later
layers, it does not extend to its full capacity of the information flow.
Therefore, ResNet is usually found to be accompanied by a gating
mechanism, a technique heavily used in RNNs, such as LSTM or
GRU, to further facilitate the gradient propagation in convolutional
networks [12].

In comparison, DenseNet [18] resolves the issue by redefining
the skip connections. The dense block differs from the bottleneck
structure in that each layer takes concatenated outputs from all pre-
ceding layers as its input, while its own output is fed to all sub-
sequent layers (Figure 1). Consequently, DenseNet requires fewer
model parameters to achieve a competitive performance.

In fully convolutional architectures, the dilated convolution is
a popular technique to enlarge the receptive field to cover longer
sequences [14], which has shown promising results in speech en-
hancement [12]. Because of the lower model complexity, dilated
convolution is considered as a cheaper alternative to the recurrence
operation. Our model adapts this technique sparingly with a recep-
tive field size that does not exceed the frame size.

We useF (l) to denote a convolution operation between the input
X(l) and the filter H(l) in the l-th layer with a dilation rate γ(l):

X(l+1) ← F (l)(X(l),H(l), γ(l)) (1)

X
(l+1)
τ,d =

∑
n+kγ(l)=τ

X
(l)
n,dH

(l)
k,d, (2)

where n, τ, d, k are the indices of the input features, output features,
channels, and filter coefficients, respectively. Note that k is an in-
teger with a range k ≤ bK/2c, where K is the 1D kernel size. In
our system we have two kernel sizes: Ks = 5 and Kl = 55. As
DCCRN is based on 1D convolution, the tensors are always in the
shape of (features)×(channels). Zero padding keeps the number of
features the same across layers. Given the dilation rate γ(l) > 1
[11], the convolution operation is defined in (2) with the dilation be-
ing activated.

In DCCRN, a dense block combines five such convolutional lay-
ers. In each block, the input to the l-th layer is a channel-wise con-
catenated tensor of all preceding feature maps in the same block,
thus substituting (1) with

X(l+1) ← F (l)
([

X(l),X(l−1), · · · ,X(lb)
]
,H(l), γ(l)

)
, (3)

where X(lb) denotes the first input feature map to the b-th block.
Note that in this DenseNet architecture, H(l) grows its depth ac-
cordingly, i.e., H(l) ∈ RK×(l−lb+1)D with a growing rate D, the
depth of X(lb). In the final layer of a block, the concatenated in-
put channels collapse down to D, which forms the input to the next
block. The first dense block in Figure 1 depicts this process. We
stack four dense blocks with the dilation rate of the middle layer
in each block to be 1, 2, 4 and 8, respectively. Different from the
original DenseNet architecture, we do not apply any transition in-
between blocks, except for the very first layer, prior to the stacked
dense blocks, expanding the channel of the input from 1 to D, and
another layer right after the stacked dense blocks to reduce it back to
1. This forms our fully convolutional DenseNet baseline. In all the
convolutional layers, we use leaky ReLU as the activation.

2.2. Context aggregation with gated recurrent network

DCCRN further employs RNN layers following the dilated
DenseNet component (Figure 1). Among LSTM and GRU, two
most well-known RNN variations, DCCRN chooses GRU for its re-
duced computational complexity compared to LSTM. The informa-
tion flow within each unit is outlined as follows:

h(t) =
(
1− z(t)

)
� h(t− 1) + z(t)� h̃(t) (4)

h̃(t) = tanh
(
Whx(t) + Uh

(
r(t)� h(t− 1)

))
(5)

z(t) = σ
(
Wzx(t) + Uzh(t− 1)

)
(6)

r(t) = σ
(
Wrx(t) + Urh(t− 1)

)
, (7)

where t is the index in the sequence. h and h̃ are the hidden state
and the newly proposed one, which are mixed up by the update
gate z in a complementary fashion as in (4). The GRU cell com-
putes the tanh unit h̃ by using a linear combination of the input
x and the gated previous hidden state h as in (5). Similarly, the
gates are estimated using another sigmoid units as in (6) and (7).
In all linear operations, GRU uses corresponding weight matrices,
Wh,Wz,Wr,Uh,Uz,Ur . We omit bias terms in the equations.

The GRU component in this work follows a “many-to-one” map-



Algorithm 1 The feedforward procedure in DCCRN

1: Input: N samples from the noisy utterance, x
2: Output: The last M/N samples of the denoised signal, ŝ
3: DenseNet denoising: X(L) ← D(x;WCNN)

4: Reshaping: X̄(L) ←
[
X

(L)

1:N/M ,X
(L)

N/M+1:2N/M , · · · ,
5: X

(L)

N−N/M+1:N

]
6: GRU denoising: ŝ← G(X̄(L);WRNN)
7: Post windowing: ŝ← Hann(ŝ) {# at test time only}

ping style for an additional level of context aggregation. During
training, it looks back M time steps and generates the output cor-
responding to the last time step. To this end, DCCRN reshapes
the output of the CNN part, the N × 1 vector, into M sub-frames,
each of which is an N/M -dimensional input vector to the GRU cell.
We have two GRU layers, one with 32 hidden units and the other
one with N/M units to match the output dimensionality of the sys-
tem. Furthermore, to ease the optimization and to limit the model
complexity of the GRU layers, we pass the last N/M sub-frame
output of the DenseNet component to the output of GRU compo-
nent via a skipping connection, which is additive as in the ResNet
architecture—the denoised speech is the sum of the output from both
components. With the dilated DenseNet component well-tuned, its
output will already be close to the clean speech, which leaves less
work for GRU to optimize, as detailed in Section 2.5.

2.3. Data flow

During training, as illustrated in Figure 1, the noisy frame is first fed
to the DenseNet component D(x;WCNN) (line 3 in Algorithm 1).
It comprises of L consecutive convolutional layers that are grouped
into four dense blocks, where WCNN = {W (1), · · · ,W (L)}. The
output frame of DenseNet, containing N samples, is then refor-
mulated to a sequence of N/M dimensional vectors, X̄(L) ∈
RN/M×M , which serve as the input of the GRU component: ŝ ←
G(X̄(L);WRNN). The cleaned-up signal ŝ corresponds to the final
state of the GRU with the dimension of N/M .

At test time, the output sub-frame of DCCRN is weighted by
Hann window with 50% overlap by its adjacent sub-frames. Note
that to generate the last N/M samples, DCCRN only relies on the
current and past samples, up to N within that frame, without see-
ing future samples, which is similar to causal convolution. Hence,
the delay of DCCRN is the sub-frame size (256/16, 000 = 0.016
second). If it were just for the DenseNet component only, such as
those convolutional baselines compared in Section 3, the Hann win-
dow with the same overlap rate would still be applied, but the model
output would be all N samples for the corresponding frame, instead
of the last N/M samples.

Table 1 summarizes the network architecture. The current topol-
ogy is designed for speech sampled at 16kHz.

2.4. Objective function

It is known that the mean squared error (MSE) itself cannot directly
measure the perceptual quality nor the intelligibility, both of which
are usually the actual metrics for evaluation. To address the discrep-
ancy, the MSE can be replaced by a more intelligibly salient mea-
sure, such as short-time objective intelligibility (STOI) [21]. How-
ever, the improved intelligibility does not guarantee a better percep-
tual quality. The objective function in this work is defined in (8),

Table 1: Architecture of DCCRN: for the CNN layers, the data ten-
sor sizes are represented by (size in samples, channels), while the
CNN kernel shape is (size in samples, input channels, output chan-
nels). For the GRU layers, an additional dimension for the data ten-
sors defines the length of the sequence, M = 4, while the kernel
sizes define the linear operations (input features, output features).
The middle layer of each dense block, marked by a dagger, is with
larger kernel size Kl = 55 and an optional dilation with the rate of
1, 2, 4, and 8, for the four dense blocks, respectively.

Components Input shape Kernel shape Output shape
Change channel (1024, 1) (55, 1, 32) (1024, 32)

DenseNet (1024, 32)

(5, 32, 32)
×4

(5, 64, 32)
(55, 96, 32)†

(5, 128, 32)
(5, 160, 32)

(1024, 32)

Change channel (1024, 32) (55, 32, 1) (1024, 1)
Reshape (1024, 1) - (4, 256, 1)

GRU (4, 256, 1)
(256+32, 32)×3

(32+256, 256)×3
(256, 1)

which is still based on MSE, but accompanied by a regularizer that
compares mel spectra between the target and output signals. The
TF domain regularizer compensates the end-to-end DNN that would
only operate in time domain, otherwise. Empirically, it is shown to
achieve better perceptual quality, as proposed in [22].

E(s||ŝ) = MSE(s||ŝ) + λMSE
(
Mel(s)||Mel(ŝ)

)
. (8)

2.5. Model training scheme

We train the CNN and RNN components separately, and then fine-
tune the combined network.
• CNN training: First, we train the CNN component to minimize
the error arg min

WCNN
E(y||D(x;WCNN)).

• RNN training: Next, we train the RNN part by minimizing
arg min

WRNN
E(s||G(X̄(L);WRNN)), while WCNN is locked.

• Integrative finetuning: Once both CNN and RNN com-
ponents are pretrained, we unlock the CNN parameter
and finetune both components to minimize the final error:
arg min

WCNN,WRNN
E(s||G

(
D
(
x;WCNN);WRNN

)
. Note that the learning

rate for integrative finetuning should be smaller.

3. EXPERIMENTS

3.1. Experimental setup

In this paper, the experiment runs on TIMIT corpus [23]. We con-
sider two experimental settings. For the model training, we ran-
domly select 1000 utterances from TIMIT training subset. 5 types
of non-stationary noise (birds, cicadas, computer keyboard, machine
guns and motorcycles) from [24] are used to create mixtures. Con-
cretely, each clean signal is mixed with a random cut of each of these
noise types at a SNR level randomly drawn from the set of integers
with the range of [−5,+5] dB. Therefore, 5,000 noisy speech sam-
ples, totaling 3.5 hours, are used for model training. At test time,
we randomly select 100 unseen utterances from TIMIT test subset,



Table 2: SDR, SIR, SAR, STOI and PESQ comparison on untrained speakers and trained noise types

Metrics SDR (dB) SIR (dB) SAR (dB) STOI (%) PESQ
SNR level (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5

Unprocessed -5.01 -0.00 5.01 -4.97 0.04 5.06 25.43 27.97 30.56 0.65 0.72 0.78 1.06 1.11 1.21
Dilated DenseNet 13.54 15.67 17.35 19.78 21.15 22.77 14.85 17.25 19.22 0.88 0.92 0.94 1.95 2.32 2.58
DenseNet+GRU 13.89 16.63 18.72 20.92 23.21 25.28 14.78 17.17 19.68 0.90 0.93 0.95 1.96 2.35 2.57

DCCRN 15.11 17.51 19.29 21.42 24.64 26.70 16.08 18.82 20.77 0.92 0.95 0.96 2.14 2.55 2.83
DCCRN* 15.08 17.45 19.31 21.30 24.71 26.33 16.22 18.76 20.83 0.92 0.94 0.96 2.13 2.54 2.82

and mix each utterance with those 5 types of noise to construct a test
set of with unseen speakers. The noise is randomly cut to match the
length of test utterances. The mixtures are generated from 3 SNR
levels (-5 dB, 0 dB and +5 dB), yielding 1500 test utterances in total.

3.2. Baselines

To validate the two-staged context aggregation method, we compare
DCCRN to regular DenseNets with one aggregation mechanism.

• Dilated DenseNet uses dilated convolution in the middle layer
of each dense block, or DCCRN without context aggregation from
GRU layers.
• DenseNet+GRU refers to the DenseNet architecture coupled with
two GRU layers, but with no dilation.
• DCCRN is our full model with the proposed training scheme
in Section 2.5. We train the CNN part with 100 epochs, the GRU
component with 20 epochs, followed by integrated finetuning of 20
epochs. The learning rates are 1e-4, 5e-6 and 5e-7, correspondingly.

• DCCRN∗ is with an enlarged frame size, N = 4096.

All models are trained to our best effort with Adam optimizer
[25]. The batch size is 32 frames. The regularizer coefficient, λ, is
1/60. The GRU gradients are clipped in the range of [−0.1, 0.1].

3.3. Performance analysis on untrained speakers

To evaluate the performance, we use BSS Eval toolbox [24]. The
BSS Eval toolbox provides an objective evaluation on source sep-
aration performance, by decomposing the overall error signal-to-
distortion ratio (SDR) into components of specific error types. In this
work, we focus on signal to interference ratio (SIR), and signal to ar-
tifacts ratio (SAR). We also choose short-time objective intelligibil-
ity (STOI) [26] and perceptual evaluation of speech quality (PESQ)
with the wide-band extension (P862.3) [27] to measure the intelli-
gibility and quality of the denoised speech. Note that narrow-band
PESQ scores (P862) [28] are approximately greater by 0.5 (e.g., 1.67
for unprocessed utterances at 0 dB SNR in our case).

As shown in Table 2, by coupling both context aggregation tech-
niques, DCCRN consistently outperforms the other baseline models
in all metrics. In terms of SDR, the average improvement is 17.3%
comparing to the DenseNet baseline. The comparison with unpro-
cessed mixtures shows an average STOI improvement of +0.23 and
PESQ of +1.38. The performance is not further improved with
N = 4096, due to the trade-off between the increased difficulty
in GRU optimization and more temporal context in each sequence1.

3.4. Generalizability for untrained speakers and noises

To evaluate model performance in an open condition with unseen
speakers and noise sources, we scale up the experimental setting.

1Denoised samples are available at https://saige.sice.
indiana.edu/research-projects/DCCRN
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Fig. 2: Comparisons in terms of STOI, PESQ, model complexity (in
million) on untrained speakers and noises against the Wave-U-Net
model reported in [29]

The training dataset is constructed from 3696 utterances from TIMIT
training set. Each utterance is mixed with 100 noise types from [30]
at 6 different SNR levels (20dB, 15dB, 10dB, 5dB, 0dB, and -5dB),
which yields 40-hour training data of ∼135GB. 100 unseen utter-
ances are randomly selected from TIMIT test set, with each mixed
with three untrained noises (Buccaneer1, Destroyer engine, and HF
channel from the NOISEX-92 corpus [31]). Note that the perfor-
mance of Wave-U-Net [32] was reported in terms of STOI and PESQ
in the narrowband mode [29].

We evaluate models in terms of STOI and PESQ improvements
(Fig. 2 (a) and (b)). Wave-U-Net achieves better speech quality im-
provement. In terms of speech intelligibility, DCCRN gives higher
STOI scores at +3dB and +6dB cases. Note that Wave-U-Net con-
tains about 7.25 times more parameters. Some options to further
promote the performance of DCCRN are to expand the size of the
receptive field or to incorporate extra phonetic content [29], although
one of the main focuses of DCCRN is to achieve an affordable model
complexity for end-to-end speech enhancement.

4. CONCLUSION

The paper introduces DCCRN, a hybrid residual network, to aggre-
gate temporal context in dual levels for efficient end-to-end speech
enhancement. DCCRN firstly suppresses the noise in time domain
with dilated DenseNet, followed by a GRU component to further
leverage the temporal context in a many-to-one manner. To tune
the model with heterogeneity, we present a component-wise train-
ing scheme followed by finetuning. Experiments showed that our
method consistently outperforms other baseline models in various
metrics. It generalizes very well to untrained speakers, and gives
reasonable performance on untrained noises with only 1.38 million
parameters.

https://saige.sice.indiana.edu/research-projects/DCCRN
https://saige.sice.indiana.edu/research-projects/DCCRN
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