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ABSTRACT

With the recent advancements of data driven approaches using
deep neural networks, music source separation has been formulated
as an instrument-specific supervised problem. While existing deep
learning models implicitly absorb the spatial information conveyed
by the multi-channel input signals, we argue that a more explicit
and active use of spatial information could not only improve the
separation process but also provide an entry-point for many user-
interaction based tools. To this end, we introduce a control method
based on the stereophonic location of the sources of interest, ex-
pressed as the panning angle. We present various conditioning mech-
anisms, including the use of raw angle and its derived feature repre-
sentations, and show that spatial information helps. Our proposed
approaches improve the separation performance compared to loca-
tion agnostic architectures by 1.8 dB SI-SDR in our Slakh-based
simulated experiments. Furthermore, the proposed methods allow
for the disentanglement of same-class instruments, for example, in
mixtures containing two guitar tracks. Finally, we also demonstrate
that our approach is robust to incorrect source panning information,
which can be incurred by our proposed user interaction.

Index Terms— music source separation, positional encoding,
panning, conditioning, neural networks

1. INTRODUCTION

Musical source separation (MSS), a task consisting in isolating vari-
ous musical constituents from a given music mixture, has been an ac-
tive research area for decades now. The problem is challenging due
to the typical underdetermined nature of musical signals (i.e., lesser
number of channels than sources), hence it has been addressed via
machine learning, e.g., spectrogram decomposition [1, 2]. Recently,
deep learning and data driven approaches have advanced this field of
study significantly. A typical deep learning-based MSS system can
be trained in a supervised fashion by comparing the model’s output
to the ground-truth source signals. It is also common to employ the
concept of masking in the feature space, such as ideal ratio mask-
ing (IRM) [3] on the coefficients of the short-time Fourier transform
(STFT) [4], while a direct waveform estimation is also common,
such as seen in Wave-U-Net or Demucs [5, 6, 7].

In this paper, we focus on the stereophonic mixtures. In mu-
sic especially, stereo channel settings are a widely popular format
and usually preferred over monophonic mixtures, since it conveys a
larger spatial field for a more enjoyable listening experience. Dis-
cussing the professional stereophonic mixing process is out of the
scope of this paper as it is artistic and complicated. It is however im-
portant to note that each music source tends to have unique stereo-
phonic characteristics, such as a panning location in the stereophonic
panorama. For example, Fig. 1 portrays what a typical panning con-
figuration for Pop music could look like. These typical configura-
tions can however change depending on the music genre, instrumen-
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Fig. 1: Diagram of the overall proposed system. Notice that the
stereo field location is addressed in degrees.

tation, and the mixing engineer’s creative freedom over the process,
making supervised learning challenging.

Indeed, stereophonic MSS has added another dimension to the
MSS problem. There are models assuming a source-specific spa-
tial panning position and disjoint orthogonality among sources in
the time-frequency domain, such as DUET [8], ADRess [9, 10], and
PROJECT [11]. While these models are strictly instrument-agnostic,
it is known that the source and spatial modeling approaches can be
combined together as in multichannel nonnegative matrix factoriza-
tion [12] and the separation of the main-versus-accompaniment us-
ing the source-filter model [13]. Likewise, knowing of or assuming
about the source locations in the stereophonic audio scene can help
improve source separation.

Here, we claim that MSS could further benefit from some ad-
ditional, high-level, spatial information, if it is provided more di-
rectly. In that regard, our approach can be seen as a variant of in-
formed source separation [14], where aligned scores [15], the user’s
query [16], and even the user’s scribble on the spectrograms [17]
can serve as the auxiliary information. Similarly, we envision that
the sources’ spatial locations can be used as the auxiliary input to
a machine learning-based MSS system as shown in [18] for speech
separation. We postulate that spatial information would be useful
when the other features, such as spectral, timbral, or temporal char-
acteristics, are not discriminative enough, e.g., in unseen instruments
or artificially synthesized sound.

To this end, we propose to condition a deep neural network
(DNN) using the spatial information of the sources of interest, which
we call spatially informed networks (SpaIn-Net). Injecting prior-
knowledge into deep learning has been well investigated for MSS
applications, for example, the target source’s label [19, 20], a query
audio signal that describes the target source [16], etc. To the best
of our knowledge, the proposed model is the first attempt in the in-
formed MSS literature to condition a DNN using spatial information
of the sources.



The proposed model applies the conditioning idea to one of
the state-of-the-art MSS systems, called Open-Unmix + CrossNet
(XUMX) [21]. We investigate various conditioning mechanisms
and show that they overall improve the MSS performance compared
to the baseline unconditioned XUMX model. Note that the system
also adds an interactive interface entry point, allowing for an inac-
curate user input that still helps MSS, opening up a new direction
to user-centered applications. The robustness to the noisy user input
differentiates SpaIn-Net from the setup in [18].

2. METHODOLOGY

2.1. Baseline Model

Our baseline model, the XUMX architecture, was introduced as
part of the Music Demixing Challenge 2021 [22] as an extension of
Open-Unmix (UMX) [23]. The XUMX model’s superiority comes
from its advanced loss functions. First, the multi-domain loss func-
tion computes the source reconstruction loss both in the frequency
and time domain, for the former mean-squared loss compares the
magnitudes of source and reconstruction, while the latter employs
weighted signal-to-distortion ratio (wSDR) on the time-domain sig-
nals, directly. Second, the model also employs a combination loss
that examines all partial mixtures and their reconstruction, e.g., the
mixture of guitar and bass versus the mixture of the estimated guitar
and bass, and so on. In this work, we opt to use of the multi-domain
loss as the sole loss function. The concept of combining sources
is also used within the model where the source-specific features
are averaged up across the original UMX network’s source-specific
extraction streams. We inherit the XUMX model to construct our
baseline and the proposed systems, although we opted out of the
combination loss which degrades the separation performance in our
same-source separation task.

2.2. Spatial embeddings

Since the conditioning process combines heterogeneous data types,
which in our case consist of stereo audio signals and the sources’
spatial information, it needs a careful design to benefit from both
modalities. First, it is reasonable to assume that the audio signals are
in high dimensional space. In our XUMX baseline, for example, the
input signal goes through STFT, resulting in an F dimensional input
vector at t-th time step, where F is defined by the frame size. Mean-
while, as for the spatial conditions, we opt to use the angle of the
source instrument’s panning location in the stereophonic sound field
as illustrated in Fig. 1. For example, if the user wants to separate
guitar and piano, the corresponding panning location will be −30◦

and +30◦, respectively. These scalars are obviously not descriptive
enough when it comes to professionally engineered music, where
the instruments can have ambient effects that disperse the perceived
panning location of the source. However, considering the potential
user interface that may benefit from its simplicity, we employ the
scalar angle value to inform the MSS system.

One obvious approach to combine these two types of informa-
tion is to concatenate the angle value to the spectrum, e.g., by ap-
pending each of the K angle values of K sources to each of the
corresponding XUMX source-specific inference streams, forming an
F + 1 dimensional vector per inference stream.

While appending the scalar to the input vector might be a valid
way, we investigate more elaborated methods to carefully exam-
ine the impact of spatial information on MSS. We observe that the
main issue might be that the two dimensions are very different, e.g.,
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Fig. 2: Examples of positional encoding embeddings for various an-
gular degree values. Note that the further apart from the center the
values are, the more disparity is reflected in their resulting positional
encoding maps.

F � 1. Out of various other ways to condition a neural network,
such as FiLM [24], in this paper, we adopted the positional encod-
ing method proposed in the Transformer model [25] that expands
the scalar variable’s dimension using sinusoids. The original posi-
tional encoding scheme converts a nonnegative integer value (e.g.,
the word order index within the input sentence) into a sinusoidal
function, represented in a D-dimensional vector. The shape of the
output positional embedding vector differs based on the scalar in-
put for discrimination. However, the original formulation is defined
only for nonnegative integers, thus necessitating a variant to cover
negative numbers, i.e., source positions on the left channel.

Hence, our proposed positional encoding is designed to create
the vector version of both positive and negative scalars. First, the
positive side is defined similarly to the Transformer’s. P is a func-
tion of the angle value in degree 0 ≤ α ≤ +45 and the dimension
index i that varies from 0 to D/2, where D is the target dimension:

P(2i, α) = sin

(
α

45
2i
D

)
, P(2i+ 1, α) = cos

(
α

45
2i
D

)
. (1)

Here, P is defined by alternating sine and cosine functions. For a
given input scalar α, the sinusoidal function “slows down” its fre-
quency exponentially as the dimension i increases. The result is
a sinusoidal function that gradually decreases its frequency in the
higher dimension (Fig 2, the first row). α contributes to the overall
frequency of this resulting sinusoidal function: the smaller α is, the
more it reduces the overall frequency and vice versa. For the nega-
tive angles, we flip these sinusoids in the left-right direction, so that
the ripple area (defined here as the faster changing frequency portion
of the positional encoding vector) appears on the opposite side:

N (2i, α)=sin
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α
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D

)
, N (2i+1,α)=cos

(
α

45
D−2i

D

)
. (2)

Note that in Fig 2 D = 1024 is a dimension chosen empirically
among other options (e.g., 512, 2048, etc.).

2.3. Conditioning mechanisms

We condition the XUMX baseline by combining the spatial infor-
mation with the spectrum. Let a(k)

t ∈ RD hold the positional em-
bedding representation of the k-th target source’s panning location
at the given time frame t, which is the output of the function P orN
depending on the sign of the angle α. In this paper we limit our dis-
cussion to the static source cases, so we drop the time index t from
a(k). Also, note that D = 1 denotes the case where we do not apply
the positional encoding and just use the raw angle values, directly.

While a(k) denotes the “ground-truth” panning angle, we also
take the incorrect user input into account. To that end, we employ
another notation, a noise-injected angle ā(k) = a(k) + ε, where ε is
a random deviation amount sampled from a uniform distribution de-



fined between [−δ, δ]: ε ∼ U(−δ, δ). We will revisit the difference
between a(k) and ā(k) in the experiments.

Meanwhile, the input mixture signal goes through the first fea-
ture extraction step, which is STFT in our XUMX setup. The left
and right channel signals go through STFT individually, resulting in
a stacked magnitude spectrogram |X| ∈ R2F×T

+ , whose upper and
bottom halves are the left and right channel spectrograms, respec-
tively. Once again, based on the static source assumption, we repeat-
edly concatenate the spatial embedding a(k) to all T spectra. Given
that we can have up to K such embedding vectors, the final condi-

tioned input vector at time t is
[
|X:,t|>,a(k)>

]>
∈ R2F+D for the

k-th XMUX inference stream, which estimates the k-th source.
Adding the two vectors is also a popular option as in the Trans-

former model. To that end, the system must make sure thatD = 2F ,
so that the addition operation holds: |X:,t|+ a(k) ∈ RF .

Finally, we also try adaptive instance normalization (AdaIN),
which was originally proposed in the context of image style-transfer
[26] with the aim to statistically align a given set of content feature to
some target style feature. In our case, the style and feature contents
denote two different modalities: the spatial information as the con-
tent feature a(k) and the spectra as the style feature |X:,t|. AdaIN’s
goal is to align their mean and standard deviation as follows:

AdaIN(|X:,t|,a(k)) = σ(a(k))

(
|X:,t| − µ(|X:,t|)

σ(|X:,t|)

)
+ µ(ak),

(3)
Here, for every frame t we align the mean and variance of the posi-
tional encoding ak with those of the input spectrogram |X:,t|.

3. DATASET AND EXPERIMENTAL SETUP

3.1. The dataset

Since we seek supervised MSS, access to the isolated ground-truth
sources is necessary during training. In this view, we opt to work
with the Slakh dataset [27], which comprises 2,100 songs and 34 in-
strument categories, for a total of 145 hours of audio data in mono
format at a sampling rate of 44.1kHz. Slakh allows a full control of
the originally monophonic sources—we freely relocate their stereo-
phonic panning locations using constant power panning laws (See
eq. (4)). Compared to other alternative choices, such as MUSDB
[28] or MedleyDB [29], the use of Slakh avoids unnecessary down-
mixing of stereophonic original sources, which then have to be up-
mixed for stereo panning. The downside is that Slakh’s stem tracks
are originally MIDI sources rendered by virtual instruments. It is
also true that our constant power panning may not represent the real-
world professional mixing process. We follow Slakh’s original split
schemes. However, due to the four-source separation setup which
omits other source categories (Sec. 3.3), the size of each of the train-
ing sets naturally reduces to 120 hours.

3.2. Mixing procedure

We use constant power panning (CPP) laws to assign each of the
target sources a randomly chosen panning angle. We ensure that the
sources’ relative levels in the resulting stereo mix remain the same
by using the CPP laws. For an amplitude of the monophonic stem
signalm(n) at time index n, the CPP law defines the gain of left and
right channels as follows:

xL(n) = (
√

2/2)(cosα+ sinα)m(n)

xR(n) = (
√

2/2)(cosα− sinα)m(n),
(4)

which are then multiplied to m(n) to construct the stereo channels
xL and xR. The resulting stereo signal x should convey a perceived
panning location that matches the target angle α.

3.3. The proposed experiments

In order to assess the validity of our approach and showcase that
the conditioning spatial information benefits the separation task, we
design multiple experimental setups.
• 4S: The first MSS task involves four distinct musical sources,

namely guitar, strings, bass, and piano.
• 4S2G: A more challenging four-source separation task that con-

tains two guitar sources (with no strings).
• D0, D1, DF, and DFAdaIN: To validate the impact of different

choices of spatial information dimension D, we investigate two op-
tions D = 1 and D = F . Note that D0 stands for the XUMX
baseline where no spatial conditioning is used, while DFAdaIN is the
D = F case where AdaIN is applied.
• CAT vs. ADD: CAT indicates the combination option that concate-

nates |X:,t| and a(k). ADD, however, denotes the case when the two
are added together. Once again, D0 ignores this option.
• ᾱTr vs. αTr and ᾱTe vs. αTe: We distinguish the two training

cases depending on the type of auxiliary input, i.e., whether the an-
gle is contaminated by the noise (ᾱTr) or not (αTr). Note that when
D0, this training option is turned off and disregarded, as the baseline
does not use spatial information. We sample ε from a uniform dis-
tribution defined over a range of [−8,+8]. There are two types of
test experiments defined similarly: ᾱTe and αTe. Our goal is to make
sure the system works robustly even on a noisy test signal ᾱTe.

For example, 4S2G-D1-CAT-αTr-ᾱTe indicates a model
trained and tested on the two-guitar mixture using the raw source
angle added to the spectra as the conditioning mechanism. Here,
the auxiliary input is noisy to reflect users’ incorrect estimation of
the source locations during the test time. However, the model is
trained on exact source locations without any noisy angle involved.
Meanwhile, 4S-D0 means the XUMX baseline tested on the de-
fault four-source separation experiment with no spatial information
involved (or ignored if there is any).

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the performance of the various models involved, we con-
sider the following well-established metrics: signal-to-distortion ra-
tio (SDR), source-to-interference ratio (SIR), source-to-artifacts ra-
tio (SAR), and, additionally, source image to spatial distortion ratio
(ISR) to properly measure the spatial reconstruction quality in our
stereophonic setup [30].

Table 1 presents the results on our first task (4S). We first ob-
serve a considerable improvement of at least 11 dB in terms of SDR
coming from all of the systems, including our baseline model, over
the input mixture. More importantly, we note that our first proposed
model 4S-D1-CAT-αTr outperforms the baseline by 1.4 dB on
average. Although this scalar raw angle value is imbalanced com-
pared to the high-dimensional spectrum vector, its efficacy signi-
fies the importance of spatial information in MSS. Furthermore, the
proposed positional encoding-based conditioning method success-
fully brings an additional improvement (0.2 dB) as shown in our
4S-DF-ADD-αTr models, although the improvement is not too sig-
nificant. Due to the space limitation, we exclude DF-CAT results
that are not too different from D1-CAT, while still being worse.

The injection of noise into α during training does not seem to
consistently improve the performance if we compare the ᾱTr and αTr



Table 1: BSS Eval improvements observed on Task 4S for the CrossNet baseline model and our proposed models: 4S-D1-CAT-αTr taking
the raw angle scalar and 4S-DF-ADD-αTr. Note that 4S-D1-CAT-ᾱTr is trained on noisy angle.

Models 4S-D0 4S-D1-CAT-αTr 4S-D1-CAT-ᾱTr 4S-DF-ADD-αTr

Instruments Gtr. Str. Pia. Bas. Avg. Gtr. Str. Pia. Bas. Avg. Gtr. Str. Pia. Bas. Avg. Gtr. Str. Pia. Bas. Avg.

Mixture SDR −12.3−22.7 −3.5 −10.2 −12.2 −12.3−22.7 −3.5 −10.2 −12.2 −12.3 −22.7 −3.5 −10.2 −12.2 −12.3 −22.7 −3.5 −10.2 −12.2

∆ SDR 10.9 15.6 8.1 9.9 11.1 12.4 17.6 8.1 11.3 12.3 12.2 18.1 8.5 11.2 12.5 12.0 18.4 8.5 11.7 12.7
4S ISR 1.5 0.2 5.6 3.6 2.7 2.7 1.5 5.5 4.1 3.4 2.8 1.6 6.0 4.1 3.5 2.3 1.7 5.9 4.3 3.5
-αTe SAR 3.1 3.5 8.6 5.6 5.2 5.3 4.2 9.4 6.8 6.4 5.3 4.8 9.6 6.7 6.6 5.3 4.7 9.5 6.8 6.6

SIR 5.3 0.5 12.6 4.0 5.6 9.0 1.1 14.4 7.8 8.1 8.7 2.6 14.2 8.3 8.4 8.9 1.7 13.9 7.7 8.1

∆ SDR 10.9 15.6 8.1 9.9 11.1 12.3 17.5 8.0 11.3 12.3 12.1 18.1 8.5 11.2 12.5 11.7 18.2 8.5 11.7 12.5
4S ISR 1.5 0.2 5.6 3.6 2.7 2.7 1.5 5.4 4.1 3.4 2.7 1.6 5.9 4.0 3.6 2.1 1.7 5.9 4.3 3.5
-ᾱTe SAR 3.1 3.5 8.6 5.6 5.2 5.3 4.2 9.4 6.7 6.4 5.4 4.8 9.6 6.6 6.6 5.3 5.2 9.6 6.7 6.7

SIR 5.3 0.5 12.6 4.0 5.6 8.8 0.8 14.5 7.7 8.0 8.6 2.3 14.0 8.3 8.3 9.2 1.8 14.1 7.5 8.1

Table 2: BSS Eval improvements observed on Task 4S2G for the CrossNet baseline model and our proposed models: 4S2G-D1-CAT-αTr
taking the raw angle scalar and 4S2G-DF-ADD-αTr. Note that 4S2G-D1-CAT-ᾱTr is trained on noisy angle.

Models 4S2G-D0 4S2G-D1-CAT-αTr 4S2G-D1-CAT-ᾱTr 4S2G-DF-ADD-αTr

Instruments Gtr1 Gtr2 Pia. Bas. Avg. Gtr1 Gtr2 Pia. Bas. Avg. Gtr1 Gtr2 Pia. Bas. Avg. Gtr1 Gtr2 Pia. Bas. Avg.

Mixture SDR −15.2 −16.5 −2.3 −15.0 −12.2 −15.2 −16.5 −2.3 −15.0 −12.2 −15.2 −16.5 −2.3 −15.0 −12.2 −15.2 −16.5 −2.3 −15.0 −12.2

∆ SDR 9.5 10.5 7.5 12.7 10.0 12.5 13.1 7.7 14.9 12.1 12.1 13.2 7.8 15.1 12.1 12.3 12.9 7.7 14.0 11.7
4S2G ISR −1.2 −0.7 6.3 3.0 1.9 1.4 1.2 6.3 3.7 3.1 1.2 1.3 6.3 3.7 3.1 1.1 1.1 6.4 3.8 3.1
-αTe SAR 5.9 5.9 9.3 5.1 6.5 5.9 6.2 9.9 6.6 7.1 6.5 6.6 9.9 6.6 7.4 5.7 6.6 9.8 6.7 7.2

SIR −2.3 −3.2 12.9 2.1 2.4 4.8 4.5 15.8 7.0 8.0 4.4 4.0 16.1 7.0 7.9 4.0 3.2 14.0 4.9 6.5

∆ SDR 9.5 10.5 7.5 12.7 10.0 12.1 12.9 7.7 14.8 11.9 11.7 13.0 7.8 15.1 11.9 12.0 12.7 7.7 13.7 11.5
4S2G ISR −1.2 −0.7 6.3 3.0 1.9 0.9 1.3 6.2 3.6 3.0 0.9 1.4 6.3 3.7 3.0 0.8 1.2 6.4 3.6 3.0
-ᾱTe SAR 5.9 5.9 9.3 5.1 6.5 5.8 6.4 9.8 6.5 7.1 6.5 6.5 9.9 6.5 7.4 5.3 6.8 10.0 6.6 7.2

SIR −2.3 −3.2 12.9 2.1 2.4 4.8 3.5 15.6 7.1 7.7 4.1 3.5 16.3 6.9 7.7 3.7 2.9 14.2 4.7 6.4

Table 3: SI-SDR improvements averaged over all four sources on
Task 4S for various conditioning approaches. The clean source an-
gles are used for the test signals (αTe) and the models are trained
from accurate source angles (αTr).

D0 DFAdaIN D16-CAT D32-CAT D64-CAT

Mixture SDR −12.2 −12.2 −12.2 −12.2 −12.2

Average SDR 11.1 11.6 12.3 11.7 12.5

models’ performance on the noise injected test experiments ᾱTe. Es-
sentially, it means that the model trained from the accurate source
location can still generalize to the test-time inaccurate conditioning.
We believe this robustness comes from the fact that (a) the model
performs non-spatial source separation anyway (b) the model im-
plicitly extracts and uses the spatial information from the input stereo
signal at least to some degree. Meanwhile, 4S-D1-CAT-ᾱTr does
not significantly deteriorate the separation performance on the test
set with clean spatial information αTe.

Table 2 presents the results from our more challenging second
task 4S2G due to the two overlapping guitar sources that share simi-
lar spectral and timbral characteristics. This second task promotes
our approach more rightfully as their potentially different spatial
positions can dissociate the confusingly overlapping sources. We
observe a more substantial improvement from our models over the
baseline once again, especially for Gtr1 and Gtr2, of over 3 and 2.6
dB, respectively, on the test signals with accurate angles. The im-
provement is still substantial when the test source angles are not ac-
curate: 2.6 and 2.4 dB. This jump in performance is also clearly
reflected in the SIR scores; particularly for the two guitars where
the baseline’s SIR is substantially low (-2.3 and -3.2 dB) while our
method showcases a clear merit (7.1 and 7.7 dB improvement). This
demonstrates how an uninformed system may poorly manage to dis-
sociate between identical instruments while ours may succeed. Once

again, due to space-constraints, we opt to exclude DF-CAT, which
did not perform nearly as well as DF-ADD. With that in mind, this
points us to conclude that the better performance of DF-ADD does
not necessarily lie in the size of D but in the conditioning approach.

In Table 3 we share additional insight over the different choices
ofD when they are concatenated to the spectrum as well as the use of
the AdaIN option. We found that most of these choices consistently
improve the baseline unconditioned model D0, while the simplest
D1 option shows the best performance.

5. CONCLUSIONS

In this paper we presented SpaIn-Net, that incorporated a condi-
tioning mechanism for musical source separation, by making use
of spatial information. The network was informed of the position
of each target source, which could be provided by the user during
inference. We proved the benefit of our approach by leading a set
of experiments involving diverse musical instrument stems drawn
from the Slakh dataset and by exploring different conditioning
methods. The outcome of our experiments showed a clear sepa-
ration improvement and robustness toward incorrect user input on
challenging stereo mixtures, both in favor of our method. In addi-
tion, we showcased a difficult mixing scenario involving multiple
instruments of the same class and demonstrated that our approach
improved the separation by 2.8 dB on average. While SpaIn-Net
showed great promises coupled with a XMUX baseline, we point
out that it presents new doors to a relatively unexplored field and that
it can serve as a preliminary base for many potential user-centered
applications in the future. Source codes and sound examples can be
found: https://saige.sice.indiana.edu/research-projects/spain-net

https://saige.sice.indiana.edu/research-projects/spain-net
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