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ABSTRACT

In this paper we integrate classic adaptive filtering algorithms
with modern deep learning to propose a new approach called deep
adaptive AEC. The main idea is to represent the linear adaptive
algorithm as a differentiable layer within a deep neural network
(DNN) framework. This enables the gradients to flow through the
adaptive layer during back propagation and the inner layers of the
DNN are trained to estimate the playback reference signal and the
time-varying learning factors. The proposed approach combines the
power of DNNs with adaptive filters. Experimental results show
the effectiveness of the proposed method in scenarios where the
echo path changes continuously and signal-to-echo ratio (SER) and
signal-to-noise ratio (SNR) are low. Furthermore, compared to fully
DNN-based baseline methods, integrating adaptive algorithm con-
sistently improves performance and leads to easier training using
smaller models.

Index Terms— Deep learning, acoustic echo cancellation, echo
path change, deep adaptive AEC

1. INTRODUCTION

Acoustic echo cancellation (AEC) has received significant attention
for several decades [1, 2, 3, 4]. The goal of AEC is to cancel echo
caused by playback or far-end speech and transmit only the near-end
speech to the far end. Though many algorithms have been proposed
in literature [3, 4], it remains a challenging problem, especially in
conditions with continuously changing echo-paths in low signal-to-
echo ratio (SER) and signal-to-noise ratio (SNR).

Conventionally, AEC is achieved by identifying a linear transfer
function between loudspeaker and microphone using adaptive filter-
ing algorithms [3] such as normalized least mean square (NLMS)
and affine projection [5, 6, 7]. The performance of these algorithms
depend on how well their parameters control the speed of conver-
gence while keeping misalignment in check. Especially during
double-talk and echo path change, where convergence rates have to
compromise between the two. Furthermore, traditional AEC algo-
rithms are linear and cannot estimate nonlinearities introduced in
the echo path by systems like amplifiers and loudspeakers [8, 9].

Deep learning has been utilized recently for solving AEC prob-
lems [10, 11]. Its capacity in modeling complex nonlinear relations
leads to improved performance [12, 13, 14]. Deep learning based
methods formulate AEC as speech separation and work by training a
network to directly separate target signal from the microphone signal
[15, 16]. They are powerful at handling nonlinear distortions and can
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achieve joint echo and noise reduction without the need for a double-
talk detector (DTD) [17] or post-filtering [18]. However, generaliza-
tion to untrained situations is crucial for deep learning based meth-
ods – complex networks and large-scale training are usually utilized
to address this problem [19].

Recent studies have shown the advantages of using differentiable
digital signal processing (DDSP) elements inside deep learning net-
works [20, 21, 22, 23]. A DDSP library that enables integration of
signal processing elements with deep learning methods is introduced
in [20]. Ramı́rez et al. trained a network with DDSP for automating
audio signal processing [21]. Ivry et al. [24] introduced a nonlinear
AEC method that jointly optimizes the network and a standard adap-
tive filter. It has also been shown that using DDSP within DNN can
potentially make training easier and models smaller [20, 22].

In this study, we combine an adaptive linear AEC algorithm with
deep learning and propose a new approach, called deep adaptive
AEC. Specifically, a DNN model is trained for step size parameter
and reference signal estimation, and these estimates are then used by
the adaptive AEC to remove echo. The adaptive AEC algorithm is
implemented as a differentiable layer with no trainable parameters,
hence the gradients can flow through it during training to update
the DNN parameters. During the inference stage, the parameters in
DNN are fixed while the adaptive filter performs echo cancellation.
The proposed method benefits from the adaptive linear filtering algo-
rithm while retaining the power of deep learning. It is worth noting
that the proposed approach enables the use of any adaptive algorithm
within any DNN framework. In this paper, we utilize the NLMS [25]
and a recurrent neural network (RNN) with long short-term memory
(LSTM) [26] as the linear AEC and DNN module, respectively. Ex-
perimental results show that our proposed approach is effective for
echo and noise removal on challenging situations with continuously
changing echo paths and low SER and SNR levels.

The remainder of this paper is organized as follows. Section 2
introduces the proposed method. Experimental results are shown in
Section 3. Conclusions are presented in Section 4.

2. METHOD DESCRIPTION

2.1. Signal model and classical AEC algorithm

In a typical acoustic signal model, the microphone signal is a mixture
of echo, near-end speech, and background noise, and its frequency
domain representation is given as:

Yk,m = Dk,m + Sk,m +Nk,m (1)

where Yk,m, Dk,m, Sk,m, and Nk,m denote the short-time Fourier
transform (STFT) of microphone signal, echo, near-end speech, and
noise at frame index k and frequency index m, respectively.
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Fig. 1. Diagram of the proposed solution for acoustic echo cancella-
tion.

Given an input signal Yk,m and a reference signal (far-end sig-
nal) Xk,m, traditional AEC algorithms such as NLMS achieve echo
removal by updating an adaptive filter to estimate an acoustic echo
path denoted by Ŵk,m. The estimated echo signal D̂k,m is then sub-
tracted from Yk,m to get the system output (the error signal) Ek,m.

Ek,m = Yk,m − D̂k,m, D̂k,m = ŴH
k,mXk,m (2)

Ŵk+1,m = Ŵk,m +
µk,m

XH
k,m

Xk,m
Ek,mXk,m (3)

where Ŵk,m = [Ŵk,m, Ŵk−1,m, · · · , Ŵk−L+1,m]T denotes an
adaptive filter of length L, Xk,m is the buffered input, µk,m denotes
the step size, and the superscript H represents conjugate transpose.

Classical AEC algorithms are faced with two main challenges.
Firstly, the step size µk,m, which determines the learning rate of the
adaptive filter, needs to be chosen carefully to guarantee the conver-
gence of algorithm and achieve acceptable echo removal. Estima-
tion of the optimal step size is further made difficult in situations
with continuous echo path variations. Secondly, many traditional al-
gorithms model the echo signal as a linear transform of Xk,m and
fail to model any nonlinear distortions introduced by the amplifier,
loudspeaker and acoustics in the echo path.

2.2. Deep adaptive AEC

A deep adaptive AEC solution, as is shown in Fig. 1, is proposed to
address the above challenges. This method achieves echo removal
by implementing a linear AEC within a DNN framework where the
step size parameter µk,m and a reference signal X ′k,m for the linear
AEC module are estimated by the DNN module.

2.2.1. DNN module

The DNN module takes microphone and far-end signal as inputs to
estimate a step size µk,m and a reference signal X ′k,m:

µk,m = f(Yk,m, Xk,m), X ′k,m = g(Yk,m, Xk,m) (4)

where f(·) and g(·) represent the nonlinear transform functions
learned by DNN for estimating µk,m and X ′k,m, respectively.

In this study, we implement the DNN module using an LSTM
network, as is shown in Fig. 2. The LSTM has four hidden layers
with 300 units in each layer. It is trained to estimate two outputs,
step size µk,m and a spectral magnitude mask Mk,m, from the input
features. The value range of both µk,m and Mk,m is [0, 1] and
sigmoid is used as the activation function for the output layers. The
estimated complex spectrogram of X ′k,m is obtained through:

X ′k,m = |Yk,m| ·Mk,m · ejθYk,m (5)
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Fig. 2. Diagram of the DNN module.

where |Yk,m| and θYk,m denote the magnitude spectrogram and
phase of Yk,m, respectively, · denotes point-wise multiplication, and
j represents the imaginary unit.

2.2.2. Linear AEC module

The DNN module outputs, together with the microphone signal are
provided to the linear AEC module for echo removal. We utilize
frequency-domain NLMS as the linear AEC module and replace the
step size and reference signal in equations (2) and (3) with the es-
timated µk,m and X ′k,m. Since the linear AEC module is imple-
mented as a differentiable layer with no trainable parameters, gradi-
ents can flow through it and train the DNN parameters.

Note that the functionality of the linear AEC is generalized here.
Rather than estimating the real acoustic echo path, the linear AEC in
the proposed method serves to estimate a transfer function between
the estimated nonlinear reference signal and the echo signal.

2.2.3. Loss function

The loss function for model training is calculated as the mean
squared error (MSE) between Ek,m and target signal Tk,m:

Loss = MSE(Ek,m, Tk,m) (6)

The proposed method can be trained to achieve echo removal only
or joint echo and noise reduction by using different target signals:
• Tk,m = Sk,m + Nk,m: A model trained using this target

signal focuses on echo removal without noise reduction (NR),
and the estimated D̂k,m approximates echo signal. We denote
this model as “Proposed (no NR)”.

• Tk,m = Sk,m: A model trained this way achieves joint echo
and noise removal, denoted as ”Proposed”. In this case, the
estimated reference signal X ′k,m contains noise information
in it and the corresponding D̂k,m approximates a mixture of
echo and background noise. Hence the final output is an esti-
mate of near-end speech with echo and noise jointly removed
from the microphone signal.

2.3. Model training and feasibility analysis

It is worth noting that we have no ground truth for µk,m and X ′k,m
to directly guide the model training. To ensure the effectiveness of
the proposed method, the linear AEC module is forced to use the
outputs of the DNN module as step size and reference signal to min-
imize the error signal during training. Through the training of the
entire model, the DNN module outputs can be interpreted as a step
size and nonlinear reference signal for echo removal. During the in-
ference stage, the parameters of DNN are fixed while the linear AEC
is updating its filter coefficients adaptively using the estimated step
size and reference signal.



The nonlinear distortions are addressed by using a DNN esti-
mated nonlinear reference signal X ′k,m in the linear AEC. By train-
ing a DNN to design appropriate time-frequency dependent step size
µk,m, the linear AEC is equipped to model echo path variations.
• From a signal processing perspective, the proposed system

can be seen as an adaptive AEC method with its reference
signal and step size estimated by a DNN module.

• From a deep learning perspective, the linear AEC module
works as a non-trainable layer within a DNN. Integrating
this interpretable and more constrained linear AEC elements
into the more general and expressive DNN encodes structural
knowledge in the model and make model training easier [20].

3. EXPERIMENTS

3.1. Experimental setup

We generate an in house dataset to carry out the experiments and
focus on situations with echo path variations in low SER, and low
SNR conditions. To record echoes in situations with continuous echo
path changes, we use a mobile recording platform and fix a micro-
phone and a loudspeaker on it. Randomly selected music and televi-
sion/radio files from Spotify, Pandora and Amazon Music are used
as far-end signals and played out of the loudspeaker. Since the echo
signal are acoustically captured signals, the recordings should have
nonlinear distortions introduced by the amplifier and loudspeaker.
For generating training dataset, the echoes are recorded in both sta-
tionary and mobile scenarios. In the stationary recording session, we
place the platform at a random position in the room. As for the mo-
bile case, the platform moves forward and backward continuously
while recording the echoes. A total of 260 minutes of recordings
are collected with around one third of the recordings recorded in the
stationary case and the remaining in the mobile case. We use 200
gender-balanced utterances from TIMIT dataset [27] as the near-end
speech. To achieve a noise-independent model, 10000 noises from a
sound effect library (http://www.sound-ideas.com) are used for train-
ing. Babble noise from the Auditec CD (http://www.auditec.com) is
used for testing. Note that the noise used for testing is untrained.

To generate a microphone signal, we randomly select a 10 sec-
ond signal from the recordings as an echo signal. A clean utterance
is padded to the same length and added to the microphone signal at
an SER level randomly selected from [-30, 0] dB. A random sec-
tion of noise is then added to the mixture at an SNR level randomly
selected from [-5, 5] dB. In total 5000 microphone signals are gen-
erated for training. For testing, we generate 100 microphone signals
for each test case using untrained near-end speech, echo, and noise.

For implementation, the signals, sampled at 16 kHz, are win-
dowed into 20 ms frames with a 10-ms overlap between consecutive
frames. Then a 320-point STFT is applied to each frame to extract
the spectrum. The length of the adaptive filter in frequency-domain
NLMS is set to L = 10. AMSGrad optimizer [28] and MSE loss are
used to train the model. All the networks are trained for 30 epochs
with a learning rate of 0.001.

Echo return loss enhancement (ERLE) is used to measure single-
talk performance. Perceptual evaluation of speech quality (PESQ)
[29] and signal-to-distortion ratio (SDR) are used to evaluate double-
talk voice quality. ERLE and SDR are defined as:

ERLE = 10 log 10
[∑

t y
2
t /
∑
t e

2
t

]
(7)

SDR = 10 log 10
[∑

t s
2
t/
∑
t(st − et)

2
]

(8)

Table 1. Performance in the presence of double-talk with different
SER levels.

SER = -20 dB PESQ SDR ERLE (dB)
Unprocessed 1.28 ± 0.28 -20.00 ± 4.97 -

NLMS 1.74 ± 0.30 -8.55 ± 2.41 11.58 ± 2.70
DNN-AEC 1.65 ± 0.31 1.31 ± 1.36 46.27 ± 4.82
DNN-AES 1.68 ± 0.30 -0.52 ± 1.42 47.89 ± 4.52
Proposed 2.00 ± 0.28 3.89 ± 1.47 52.09 ± 3.48

SER = -10 dB PESQ SDR ERLE (dB)
Unprocessed 1.88 ± 0.22 -10.00 ± 9.39 -

NLMS 2.32 ± 0.23 -4.21 ± 1.47 11.45 ± 3.10
DNN-AEC 2.30 ± 0.24 4.72 ± 1.50 45.79 ± 4.20
DNN-AES 2.28 ± 0.22 3.76 ± 1.63 48.86 ± 4.34
Proposed 2.59 ± 0.21 7.79 ± 1.96 51.50 ± 3.29

3.2. Performance in double-talk only situations

We first evaluate the performance of the proposed method in situa-
tions with double-talk only (without background noise) and compare
it with other DNN based methods. Comparison results are presented
as mean ± std and are shown in Table 1. DNN-AEC refers to the
fully DNN baseline method that estimates echo signal and then sub-
tracts it from the microphone signal for echo removal [30]. DNN-
AES denotes the fully DNN method that directly estimates near-end
speech from the microphone signal [15, 16]. For a fair compari-
son, the DNN structure used in DNN-AEC and DNN-AES is the
same as that used in the proposed method. The NLMS algorithm
used for comparison is the same as the linear AEC module in the
proposed method and a DTD [17] is employed in this NLMS for
handling double-talk. It can be seen from the table that all deep
learning based methods outperform traditional NLMS algorithm in
terms of ERLE. The proposed method achieves better speech quality
and echo removal compared to other deep learning based methods.

3.3. Performance in double-talk and background noise

This part studies the performance of the proposed method in the
presence of double talk and background noise. Besides DNN-AEC
and DNN-AES, DNN based residual echo suppression (RES), de-
noted as DNN-RES, is utilized as another comparison method.
DNN-RES [10, 31] is a popular method for joint echo and noise
reduction where DNN is utilized to further suppress residual echo
and noise at the output of a traditional AEC algorithm. For compar-
ison purpose, the traditional AEC algorithm and the DNN structure
used in the DNN-RES are the same as those used in the proposed
method. Table 2 shows the comparison results. In general, NLMS,
DNN-AEC, and Proposed (no NR) focus on echo removal without
handling noise reduction while the other three methods are used
for joint echo and noise removal. It can be seen that the proposed
method consistently outperforms other methods for the tasks of echo
removal only and joint echo and noise removal.

Spectrograms of a test sample are given in Fig. 3. It is seen
that DNN-AES, DNN-RES and the proposed method are capable of
removing echo and noise jointly. The output of the proposed method
approximates the target near-end speech and has less residual echo
and noise during double-talk periods compared to other methods.

3.4. Analysis of the estimated nonlinear reference and step size

In adaptive filter based AEC algorithms, the reference signal should
be highly correlated with the microphone signal for efficient adap-
tation. The ideal reference signal is a microphone signal without
any near-end signal and echo removal can be achieved by directly



Table 2. Performance in the presence of double-talk and untrained
babble noise with different SNR levels. The SER level for each test
sample is randomly selected from [-30,0] dB.

Babble noise, SNR = 0 dB PESQ SDR ERLE (dB)
Unprocessed 1.44 ± 0.45 -14.99 ± 7.10 -

NLMS 1.74 ± 0.31 -7.58 ± 3.01 8.62 ± 3.32
DNN-AEC 1.88 ± 0.27 -0.10 ± 0.97 16.66 ± 7.75

Proposed (no NR) 1.94 ± 0.24 0.31 ± 0.56 17.29 ± 8.37
DNN-AES 1.75 ± 0.41 0.63 ± 2.84 36.35 ± 7.68
DNN-RES 1.78 ± 0.42 -0.13 ± 0.89 46.13 ± 12.34
Proposed 2.01 ± 0.32 3.84 ± 1.78 47.69 ± 6.80

Babble noise, SNR = 5 dB PESQ SDR ERLE (dB)
Unprocessed 1.52 ± 0.46 -15.65 ± 6.99 -

NLMS 1.87 ± 0.36 -7.16 ± 3.45 10.52 ± 2.97
DNN-AEC 2.02 ± 0.33 1.82 ± 2.08 21.09 ± 6.99

Proposed (no NR) 2.09 ± 0.29 3.02 ± 1.59 22.97 ± 7.79
DNN-AES 1.83 ± 0.40 0.71 ± 3.54 41.41 ± 4.05
DNN-RES 1.88 ± 0.48 -0.13 ± 0.68 52.35 ± 8.59
Proposed 2.12 ± 0.35 4.70 ± 2.66 52.68 ± 4.90
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Fig. 3. Spectrograms of a test sample with -10 dB SER and bab-
ble noise at 5 dB SNR: (a) microphone signal, (b) target near-end
speech, and enhanced speech signals of (c) NLMS, (d) DNN-AEC,
(e) Proposed (no NR), (f) DNN-AES, (g) DNN-RES, (h) Proposed.

subtracting the reference signal from the microphone signal. The
step size should be small in the presence of interferences to avoid
divergence. For situations with echo path variations, the filter should
adapt quickly if the echo path changes fast, and vice-versa.

Figure 4 plots the outputs of the DNN module, Mk,m and µk,m,
in different situations, where the spectrograms of microphone signal
and target near-end speech are provided in Fig. 4 (a) and (b) to show
the activities of near-end speech. While Fig. 4 (c) and (d) are the
outputs in situations without background noise, the remaining plots
are obtained in situations with babble noise. Figure 4 (c) illustrates
that the estimated reference signal approximates the microphone sig-
nal with near-end speech suppressed from it, which is effective for
echo removal. The step size values shown in Fig. 4 (d) tend to be
very small during double-talk periods to avoid divergence and then
increase immediately following the double-talk section to speed up
the convergence of the algorithm. Moreover, the step size values at
higher frequencies are relatively larger than those at low frequencies.
This is because the power of interference is larger at low frequencies,
and also in the mobile case, the acoustic channel changes faster at
higher frequencies due to the Doppler effect [32]. The proposed sys-
tem with “no NR” only focuses on echo removal and it classifies the
whole utterance as double-talk due to the presence of strong babble
noise. Therefore, the estimated reference signal approximates the
echo components in the mixture and the values of step size are close
to zero, as shown in Fig. 4 (e) and (f). The outputs for joint echo and
noise removal are shown in Fig. 4 (g) and (h), where the estimated
reference signal and step size show a similar trend to the no-noise
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Fig. 4. DNN outputs of a test sample with -20 dB SER and babble
noise at 0 dB SNR: (a) Yk,m, (b) Sk,m, (c) and (d) are, respectively,
Mk,m and µk,m of Proposed in no-noise case, (e)Mk,m of Proposed
(no NR), (f) µk,m of Proposed (no NR), (g) Mk,m of Proposed, and
(h) µk,m of Proposed.

Table 3. Performance comparison between DNN-AES and Pro-
posed using different DNN structures with babble noise at 0 dB
SNR.

DNN-AES Proposed
DNN DNN-L DNN-M DNN-S DNN-L DNN-M DNN-S

# Parameter 3.2 M 1.2 M 0.3 M 3.2 M 1.2 M 0.3 M
PESQ 1.75 1.72 1.72 2.01 1.98 1.96
SDR 0.63 0.69 0.91 3.84 3.64 3.42

ERLE 36.35 35.32 32.20 45.90 43.96 39.91

case in Fig. 4 (c) and (d). The reference signal, in this case, has
noise information in it and the output of the whole system achieves
joint echo and noise suppression.

3.5. Comparison results using DNNs with different sizes

We further compare the performance of the proposed method and
the DNN-AES method that trained using the same network struc-
ture. We gradually shrink the model size and train the two methods
using three different DNNs. DNN-L is the large model used in pre-
vious experiments. DNN-M is a similar LSTM with 3 hidden layers
and 200 units in each layer. DNN-S is a small LSTM with 2 hidden
layers and 100 units in each layer. The number of parameters and ex-
perimental results are given in Table 3. We note that the performance
of both methods reduces gradually by shrinking the model size while
the proposed method consistently outperforms DNN-AES. The pro-
posed method trained with a smaller model (DNN-S) achieves better
performance than DNN-AES trained with a larger model (DNN-L).

4. CONCLUSIONS

In this paper, we have proposed a deep adaptive filtering based AEC
technique to leverage the advantages of traditional and deep learning
based AEC methods. The proposed approach enables the integration
of traditional AEC elements within deep learning methods to achieve
adaptiveness while retaining the power of neural networks. A DNN
model is employed to estimate a control parameter and a nonlinear
reference signal, which are then used by a differentiable linear AEC
module for echo cancellation. Systematic evaluations with ERLE,
PESQ, and SDR show the effectiveness and robustness of the pro-
posed method for echo and noise removal in low SER/SNR condi-
tions with continuous echo path variations. In addition, the proposed
method trained using a smaller model achieves better performance
compared to large fully-DNN based models.
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