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ABSTRACT

In this work, we explore the task of hierarchical distance-based
speech separation defined on a hyperbolic manifold. Based on the
recent advent of audio-related tasks performed in non-Euclidean
spaces, we propose to make use of the Poincaré ball to effectively
unveil the inherent hierarchical structure found in complex speaker
mixtures. We design two sets of experiments in which the distance-
based parent sound classes, namely “near” and “far”, can contain
up to two or three speakers (i.e., children) each. We show that our
hyperbolic approach is suitable for unveiling hierarchical structure
from the problem definition, resulting in improved child-level sep-
aration. We further show that a clear correlation emerges between
the notion of hyperbolic certainty (i.e., the distance to the ball’s
origin) and acoustic semantics such as speaker density, inter-source
location, and microphone-to-speaker distance.

Index Terms— distance-based source separation, hyperbolic
space, sound hierarchy, speech separation

1. INTRODUCTION

Humans can focus on a sound source of interest in complex acous-
tic scenes with remarkable ease [1]. Such “selective attention” [2]]
could be based on contextual and subjective motivations, but other
more established ones can improve source separation systems. By
using the deep neural network (DNN)-based supervised learning ap-
proaches [3] as the framework, recent research has attempted to en-
compass the selective attention concept by conditioning the model
with the auxiliary information, such as text queries [4] or language,
gender, and spatial information about the source [5]. In this paper we
focus on the spatial cues [6], e.g., speaker positions or directional in-
formation, which have been proven to be useful [7,18}19].

More recently, the task of distance-based source separation was
introduced [[10], whose goal is to separate a monoaural mixture x
into its distance-based constitutive components, the sum of near
sources ) = D oken 5 and far sources =7 = D oker s,
where N and F stand for the sets of near and far sources, respec-
tively. The grouping is defined by a distance threshold 7. In [10],
the input is restricted to single-channel signals while proposing the
speaker’s distances to the microphone as a determining factor in
the source separation task, differently from the previous work, such
as SpeakerBeam [11]], where the spatial information mainly comes
from a multi-channel context.

In this work, we propose to formulate a hierarchical version of
the distance-based source separation problem. We present a two-
level hierarchy, where the system separates the mixture into two par-
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Fig. 1. Illustration of distance-based source separation performed
on the Poincaré ball. Top-left is a projection of a three-speaker mix-
ture, where two speakers (green and blue) belong to the near field
(<7 =0.8 meter) while one (red) to the far field (> 7). Top-right
shows the room configuration of the same mixture. Note that the
source at the near-far field boundary tends to be projected at around
the center of the Poincaré ball, reflecting the model’s uncertainty.
The bottom plots denote projections of two speakers that are pro-

gressively placed closer to 7 (thus no hierarchy).

ent nodes, 2) whose source components are closer to the micro-
phone than 7, i.e., || — loc(s™™)||s < 7, where m and loc(s™*))
respectively denote the microphone and source locations in the 3D
room, and vice versa for the farther source group ) In addition,
the child-level task aims at separating individual sources s,

Inspired by the recent success of hyperbolic manifolds to model
hierarchical structures in computer vision [12} [13]], natural language
processing [[14], and more recently audio [1516}17]], we propose to
utilize a popular hyperbolic model, the Poincaré ball whose embed-
dings efficiently preserves the intrinsic hierarchical structure of the
data in low dimensional space with minimal distortion [18].

The Poincaré ball has also proven to provide reliable and natural
measures of certainty estimation [12,/13}19], which we can interpret
as the model’s source-specific confidence level put in the context of
audio source separation [[15]. In our hierarchical setup, we assume
that the geometry between the sources and the microphone intro-
duces uncertainty to the parent-level separation task, i.e., the closer
individual sources are to the threshold 7, the more challenging the
parent-level separation will be. In addition, the child-level separation
faces the challenges that a separation system typically needs to deal
with, e.g., same-gender sources being more difficult to separate and
therefore inducing additional uncertainty to the separation task. Yet,
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the child-level sources’ geometry also contributes to the uncertainty
mapping. Fig.[1]exemplifies this paradigm; the close proximity of
the blue source (d = 0.7) to the threshold (7 = 0.8) leads its projec-
tions on the Poincaré ball to be closer to the origin, while the green
source’s proximity to the microphone (d = 0.2) mitigates the uncer-
tainty, thus pushing its projections to the edge of the ball. In this
case the main cause of the performance degradation in the parent-
level separation task is the blue source’s location which puts many
of its embeddings on the other side of the decision boundary. Mean-
while, the red source’s farthest location pushes its embeddings away
from the origin and consequently the near-far decision boundary as
well, signifying the relevance of the geometry to both levels.

Our paper empirically demonstrates two conjectures. First, the
hyperbolic model does a better job at hierarchically separating the
parent and children sources in terms of scale-invariant signal-to-
distortion ratio (SI-SDR) [20] than its Euclidean counterpart. Sec-
ond, we analytically show that the network can intrinsically map out
the hyperbolic certainty on the Poincaré ball to a few acoustic seman-
tics. We envision that the interpretability could benefit geometry-
sensitive real-world applications, e.g., disambiguating meeting par-
ticipants from other interferences based on their physical locations
(i.e., inside the same meeting room or not), discerning close and im-
portant sound events from too-far-to-be-relevant ones, etc. We fur-
ther claim that the simplicity of the projection-based conversion to
the Poincaré ball makes it an efficient alternative to the sampling or
ensemble-based uncertainty quantification method [21].

2. HYPERBOLIC DISTANCE-BASED SPEECH
SEPARATION

2.1. Problem Formulation

Following [15]], we formulate our source separation task as a mask-
inference problem. Given a complex mixture spectrogram X &
CT*T with K underlying sources and a separator model f(-), we
estimate a K -dimensional mask M € {0, 1}7**X which is a
one-hot vector and whose k-th element of a time-frequency (TF) bin
My 5 = 1 only if the k-th source is the most dominant one in that
bin. Likewise, the problem boils down to a K-class classification,
where softmax applied to f(-) infers the posterior probability of each
TF bin (¢, f) belonging to the sources, i.e., M; s, = P(k|Xq.r).
The mask estimates M are then element-wise multiplied with the
original mixture X in order to retrieve the k-th spectrogram esti-
mate. The inverse short-time Fourier transform (iSTFT) converts
it back to the time domain: §*) = iSTFT(X ® M.. ). An es-
tablished method to obtain these masks is to compute embeddings
Z: ¢.. € RY of certain dimension L for each of the TF bins, using a
neural network-based transformation function, i.e., Z < f(X).

In the proposed system, the separator network projects the input
to a hyperbolic manifold, i.e., the Poincaré ball, to perform classifi-
cation on it [15]. To this end, f(-) is repurposed: it originally con-
sists of a bidirectional long short-term memory (BLSTM) stack fol-
lowed by a linear layer that converts the BLSTM output to Z. As for
the hyperbolic counterpart, Z goes through an additional determinis-
tic projection function H = exp§(Zy,s,.) as in Eq. (2), followed by
the hyperbolic multinomial logistic regression (HMLR) to substitute
softmax. The whole process can be summarized as follows:

| softmax(Z;y.) Euclidean,
P(k|Xy,p) =~ { HMLR(H, ) Hyperbolic. M
Given two parent groups W) = D oken s*® and £ =
(keF)

D oker s() as well as their respective children s* €M) and s

source separation aims to estimate two sets of masks for parent
and children levels, separately. The parent-level masks are Mf‘"lﬂe'(’)l =
P(z™) | Xe.f) and MY = E(m<f )| X, 7)s thus MPFE+MP =L
For the child level, an individual separation task per parent, i.e.,
D oken t"e}“k =land ), ~ Mtﬁ‘}k =1, .respect.ively, is defined.
We assume independence between the two hierarchical levels, so the
hierarchical softmax produces level-specific mask estimates for the
parents and children independently.

2.2. Hierarchy in the Hyperbolic Space

Hyperbolic spaces have the inherent ability to efficiently represent
tree-like structures in a continuous way [22]. Because of the unique
geometry induced by these spaces, the distance from the origin
grows exponentially (i.e., as a function of the curvature) with the
radius, reaching infinity at the ball’s edge.

Let D7 be the n-dimensional hyperbolic space with a Rie-
mannian geometry and negative curvature ¢ < 0, which defines
a cone-shaped hyperbolic manifold, while the other two isotropic
model spaces being Euclidean (¢ = 0) and spherical (¢ > 0). In this
paper, we use the Poincaré ball, one of the most popular hyperbolic
models for gradient-based learning [[12} [19} [13| [15], defined by the
manifold and Riemannian metric pair M and g2 (z) = (A2)?g”
respectively, where A& = 2/(1 — c||z||?) is a so-called confor-
mal factor and ¢¥ the Euclidean metric. The model defines its
induced distance metric d in relation to the center of the ball:
dp(a,b) = cosh™* (1 + 2%) where dp(a,b) de-
fines the shortest distance path, or geodesic, between points a and
b on the Poincaré ball. In the context of the hierarchical trees, the
mean between two leaves in this space would result in a parent rather
than another intermediate leaf, and would be located closer to the
ball’s origin (i.e., analogous to a continuous hierarchy).

s

2.3. Hyperbolic Learning

Our architecture operates in both Euclidean and hyperbolic spaces
through exponential and logarithmic maps, allowing us to project
the embeddings to and from the hyperbolic space, respectively. For
embeddings v € R™ \ {0} and y € D \ {0},

¢ tanh(y/c[|v]]) c tanh ™" (v/clly|})
X = 1 = 2
€ pO(U) \/EH'UH v, Ogo(y) ﬁ”y” Y, ( )
where the former represents the deterministic conversion applied to
the output of the separator network, i.e., Hy y = expg(Zy,r), as a
mapping from the tangent space to the hyperbolic manifold, while
the latter the inverse (i.e., R" to D7 and inversely). Note that both
projections are centered around their subscript 0. Once the embed-
dings are projected into the hyperbolic space, the key operations such
as vector additions and multiplication follow the rules derived by the
Riemannian metric in the Poincaré space [14].

In Euclidean geometry, MLR works with the assumption that
logits are the representation of the embedding’s distance to the
class hyperplanes. In the hyperbolic space, this assumption can
be reformulated from the perspective of margin hyperplanes. For
a given class k € {1,..., K}, one can define a geodesic in D7
orthogonal to a; and containing pi. Considering an embedding
Zy,r projected onto the ball, the final hyperbolic MLR formula is:

A, lla cl{—py a
P(k‘Ht,f) o exp( pk\JE Kl Sin}fl( (liﬁlékéigzzt)vufz’) \ﬁl)l I )) , where
@, denotes the Mobius addition in D7 [23]. Note that both px and
ay, are learnable parameters.




Density (2 children)
Density (3 children)

{2,0} {21} {22} {1,2} {0,2}
(30} {31} {22} {13} {03}

Training 3156 8217 28059 71152 89416
Validation 45 101 321 916 1117
Testing 400 400 400 400 400

Table 1: Distribution of the various speaker density configurations
across our two hierarchical use-cases.

3. DATA CURATION AND SIMULATION

To validate our method with various acoustics configurations, we use
similar methods as presented in [[10]. We first generate random room
impulse responses (RIRs) using the Pyroomacoustics toolbox [24].
The room dimensions are uniformly randomized between 3.0x 4.0 x
2.13 and 7.0 x 8.0 x 3.03 meters. Microphone locations are ran-
domly sampled within the resulting room dimension. In each room,
four source locations are independently and randomly sampled from
a beta distribution based on their distance from the microphone. The
target RTso (in seconds) for each room simulation is randomly sam-
pled in a similar fashion from the range [0.1,0.5]. For the speech
sources, we opt to use Libri-light [25] to generate the training set,
and Librispeech-clean [26] for validation and testing.

During training, a room is first randomly sampled without
replacement for each training example. Six-second-long speech
chunks are then randomly sampled from the pool of speech utter-
ances with replacement by zero-padding short utterances. For each
training mixture, all four sources are expected to be exploited unless
their associated parent class has already reached the maximum num-
ber of allowed children. The validation and testing sets are prepared
using the same procedure.

4. EXPERIMENTAL SETTINGS

To validate our approach, we design a set of three experiments; the
first one solely aims at separating the parent sources +™) and %)
(i.e., one-level model) as in [10]. The latter two exploit the two-
level models with different hierarchical configurations: one assumes
a maximum of two child sources per parent, while the other allows
three child sources per parent. Table [1] denotes the five possible
speaker setups found in our dataset for each configuration.

Model architecture: Our model follows the same architecture as
described in [15], which consists of four BLSTM layers with 600
units in each direction; a dense layer is then used to obtain an Eu-
clidean embedding for each TF bin where L = 2. A dropout of
rate 0.3 is applied to the output of each BLSTM layer, except the
last one. For the hyperbolic model with negative curvature (c < 0),
an additional exponential projection layer maps the Euclidean em-
beddings onto the Poincaré ball. As discussed in Section[2.1] either
softmax with Euclidean logits or the hyperbolic MLR version then
computes the masks for each of the source classes. In practice, we
follow the hierarchical softmax approach from [12f], and therefore
have two MLR layers: one for the binary classification of the parent
sources ) and (¥, and the second one with K =4 or K =6 for
the leaf classes, as dictated by our two possible two-level experiment
configurations. We use the mixture phase for resynthesis.

Loss functions: Among the possible spectrogram, waveform, and
mask-based loss functions proposed in [[15]], we opt to use the cross-
entropy (CE) loss to compare the ground-truth binary masks and the
prediction as in classification setups [3}27]. In other words, we as-
sume each TF bin embedding to belong to one source only and use a
one-hot vector encoding (or IBM in the two-source mixture case) as
the target mask on CE. Equations (3) to (5) denote the loss functions

for three cases: the parent level, near sources and far sources in the
children level, respectively'

Parents: £P"" = F Z CE ( Mparem Mtpd‘;i:m) 3)

Near children: £"* = ﬁ ; CE (Mt"e}\rke/\f‘ |Mt"e;rke\f) 4)

: 1 : ~ £
Far children: £™ = TF ZCE (M{drfke]-‘HMtfd}ke]:) G)
t,.f

where the parent-level loss effectively compares the source estimate
to the sum of near sources group, e.g., ) ~ 1STFT(M Pt o X)),

and ditto for the far sources. In contrast, the child-level loss func-
tions are parent-specific, meaning the source separation results are
compared to the child sources that belong to the same parent, either
near or far. Note that while the order of the parent source groups is
assumed, permutation invariant training (PIT) [28] for the child-level
is required as each parents’ child sources are in no particular order.
Hence, the £P**™ works as the sole loss function for parent-only
source separation task as in [10], i.e., the one-level model. Mean-
while, our two-level hierarchical model is trained from the com-
pound of all loss terms: £ = LPen 4 £rear 4 pfar

Training: All experiments use the Adam optimizer for the Euclidean
parameters, and the Riemannian Adam [29]] implementation from
geoopt [30] for the hyperbolic parameters. All models are trained
using chunks of 6.0 s, batch size of 96 over a total of 200 and 300
epochs for the one-level and two-level models, respectively. We use
an initial learning rate of 103, which is halved if the validation loss
does not improve for 10 epochs. We set the STFT size to 32-ms with
a 50% overlap and the square-root Hann window.

Evaluation: Our main focus is to show the predictive uncertainty
naturally conveyed by the hyperbolic space and how this information
could potentially be exploited on downstream systems. We report the
validity of the proposed method in terms of SI-SDR improvement
(SI-SDRi) [20] and use the best permutation at the child-level. If
one of the parents is silent (i.e., all speakers belong to either the
“near” or “far” field), we evaluate the predicted silent sources by
how much signal was bled into it. For that reason, we report the
loudness ratio between the input mixture and the predicted silent
source, called noise reduction, as in [10] (i.e., the larger the better).

5. EXPERIMENTAL RESULTS

5.1. Uncertainty Analysis

Our experiments explore how well the Poincaré ball can model the
task of hierarchical distance-based source separation. Precisely, we
investigate to what extent the hyperbolic space can tie the intrinsic
notion of certainty to the acoustic configurations, such as source-
to-microphone distance, the relative distance among speakers, and
speaker density, with a fixed distance threshold 7 = 0.8 meter.
Speaker density: We refer to speaker density as the relation be-
tween the number of speakers present in the parent classes “near”
and “far”. For example, our two-level hierarchy (see Table u]), can
have a “dense” setup with up to two child sources on each parent side
({2, 2}), while its “moderate” ({2, 1}, {1, 2}), and “sparse” ({2, 0},
{0, 2}) setups are also considered. Fig shows the embeddings’
L2 norm distribution across all three configurations. We note that
when all children belong to one parent, the model showcases high
level of certainty, with most of the projected embeddings located far
from the origin.
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Fig. 2: Distributions of L2 norms to the origin of the Poincaré ball for all embeddings in their dedicated testing-set, as a function of various
acoustics paradigms, such as speakers configuration (left), sources (center), and microphone (right) distances.

c SI-SDRi Noise Reduction

Near Far Near

No Proc 3.1 -3.1 —

0.0 6.5 9.1 27.1
-0.1 6.3 9.0 271
-1.0 6.3 9.2 25.8

Table 2: SI-SDR improvement (dB) comparisons on models involv-
ing different curvatures (i.e, ¢ = 0.0 for Euclidean and ¢ < 0 for
hyperbolic) on a parents-only training setup. Power reduction is re-
ported when “near” is silent (the larger the better).

Distance among sources: To observe how the relative distance
among the sources can affect the hyperbolic certainty in the speak-
ers’ embeddings, we design a small test set with one child per parent,
ie, ™) = s and 27) = 5. These sources are equidistanced
from the threshold 7, meaning d(s?)—7=7—d(s)), where d(-)
denotes the distance from the microphone. We then vary d(s(l)) and
d(s®) such that the two sources’ relative distance d(s®))—d(s?))
increases from 0, ie., d(s'®) = d(sV) = 7, to 1.4 meters, i.e.,
d(s®) = 1.5 and d(s) = 0.1. Fig. shows the observed
distribution of speakers embeddings’ Lo norms as a function of their
relative distance. We note an overall decrease in certainty as their
relative distance decreases, and vice versa.

Distance from the microphone: We also consider the sources’
distance from the microphone by designing another one-child-per-
parent test set with the far source away from the microphone with
a fixed distance d(s®)) = 2.9, while the near source s'!) varies its
distance to the microphone in the range of [0.2, 0.8]. From Fig
we observe that the closer sV is to the microphone, the higher the
certainty is observed from the hyperbolic embeddings.

5.2. Separation performances

Table[2]reports the results in terms of SI-SDR improvement from our
one-level model (i.e., the parent-only case), where no performance
gain is induced by the hyperbolic setup. We speculate that it is due to
the lack of hierarchy in the problem setup, negating the benefit from
the hyperbolic manifold. However, we emphasize that as shown in
Fig. m the notion of certainty in the proposed hyperbolic approach
can provide an additional user interface, identifying borderline cases.

Table [3| shows the results from the two-level setups. We report
the performance of both Euclidean (¢ = 0.0) and hyperbolic mod-
els (c € [-0.1,—1.0]). In the top rows (two children sources per
parent), the parental separation results are not affected by our hy-
perbolic setup. However, we observe clearer improvement in the
child-level results using the hyperbolic method, with an average im-
provement of 0.2 dB SI-SDR over their Euclidean counterpart. The
more complex two-level setup with up to three child sources per par-
ent (bottom rows) shows a solid 0.5 dB SI-SDR improvement with

Parents Children

Speaker Density c = 0.0 —0.1 —-1.0 0.0 —0.1 —-1.0
2 near, 0 far 31.8 208" 287" 84 8.4 8.4
2 near, 1 far 1.5 1.5 1.5 5.9 6.1 6.3
2 near, 2 far 2.4 2.3 2.3 4.0 4.1 4.1
1 near, 2 far 6.7 6.7 6.8 7.1 7.5 7.1
0 near, 2 far 63.3" 6137 6327 89 9.2 9.2
Average (SI-SDRi) 3.5 3.5 3.5 6.8 7.0 7.0
3 near, 0 far 14.2F 1957 157 57 49 6.0
3 near, 1 far 0.6 0.8 0.7 4.2 4.0 4.4
2 near, 2 far 2.5 2.5 2.6 4.6 4.6 4.9
1 near, 3 far 49 4.7 5.0 5.0 5.1 54
0 near, 3 far 49.2° 0267 416" 59 6.9 7.0
Average (SI-SDRi) 26 2.7 2.8 5.1 5.1 5.6

Table 3: SI-SDR improvement (dB) of the models involving differ-
ent curvatures (i.e, ¢ = 0.0 for Euclidean and ¢ < 0.0 for hyper-
bolic) on our 2-level setup with up to two and three child sources per
parent (top and bottom rows, respectively). Noise Reduction, when
one of the parent is silent, is indicated by T (the larger the better).

c = —1.0. We believe that the children benefit the most from the
hyperbolic treatment due to the intrinsic nature of the space to effi-
ciently models the hierarchical structure modelled by the data. This
could also explain the greater gain when more children are present.
This relatively small performance margin from the hyperbolic
method aligns well with the literature [12} 13} 15]. In this work, we
rather bring the readers’ attention to the explanatory and intuitive na-
ture of the hyperbolic representation. For example, obtaining a nat-
ural measure of uncertainty predictions for these hierarchical tasks
could help tackle the typical trade-off between sensitivity and speci-
ficity: one can still choose to acquire the closer source group if the
system is uncertain about the child-level source separation results.

6. CONCLUSIONS

In this work, we redefined distance-based single-channel speech sep-
aration as a hierarchical task performed on an hyperbolic manifold
(i.e., the Poincaré ball). We designed a two-level hierarchy, whose
parent level distinguishes sources based on their distance (i.e., near
and far) to the microphone, while each parent may contain up to
two or three speakers (i.e., children). We empirically showed that
the hyperbolic space consistently outperformed our Euclidean base-
line when the task was challenging enough with more child-level
sources. In addition, the network was successful in modeling some
key acoustic concepts such as speaker density, the relative distance
between sources, or microphones, and translating them to the no-
tion of hyperbolic certainty which could be effectively used towards
practical downstream tasks. Code will be made availableE]

'https://minjekim.com/research-projects/hdss
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