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ABSTRACT

End-to-end speech coding models achieve high coding gains by
learning compact yet expressive features and a powerful decoder in
a single network. A challenging problem as such results in unwel-
come complexity increase and inferior speech quality. In this paper,
we propose to separate the representation learning and information
reconstruction tasks. We leverage an end-to-end codec for learning
low-dimensional discrete tokens. Instead of using its decoder, we
employ a latent diffusion model to de-quantize coded features into
a high-dimensional continuous space, relieving the decoder’s bur-
den of de-quantizing and upsampling. To mitigate the issue of over-
smooth generation, we introduce midway-infilling with less noise
reduction and stronger conditioning. We investigate the hyperpa-
rameters for midway-infilling and latent diffusion space with differ-
ent dimensions in ablation studies. Subjective listening tests show
that our model outperforms the state-of-the-art at two low bitrates,
1.5 and 3 kbps. We open-source the project for reproducibility 1.

Index Terms— Speech Codec, Latent Diffusion Model, Speech
Synthesis

1. INTRODUCTION

Neural speech codecs are designed to capture intricate patterns from
human speech more effectively than traditional methods. Recently,
with the successful attempts of codec-based generation [1, 2, 3],
high-bitrate neural codecs [4, 5, 6] gain much attention, for its ca-
pability of recovering high-fidelity audio.

Current high-fidelity codecs mostly perform waveform coding
[7, 8]. They typically learn encoder and decoder models end-to-
end, aiming at extracting expressive latent features and learning
powerful decoders in a single network. Reconstruction objectives
favor preserving essential information. Thus, with abundant data,
end-to-end models are generally good at learning representations
and achieving high-fidelity reconstruction at higher bitrates. For
example, SoundStream achieves reasonable speech quality at 3kbps
with fully convolutional architecture and residual vector quantiza-
tion (RVQ) [4]. Pre-trained transformer and language models have
been used to assist low-bitrate coding in open-sourced EnCodec
[6] and an ultra-low-bitrate codec [9]. More recently, DAC [5] im-
plements RVQGAN and snake activation into the architecture and
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Fig. 1: A diffusion model de-quantizes the low-dimensional,
low-bitrate discrete speech tokens (right-hand side) into high-
dimensional continuous variables (left-hand side).

improves coding quality, especially on high bitrates. Additionally,
studies on disentangling inherited components of the input speech
[10, 11, 12] further reduce redundancy and improve robustness.
However, the above-mentioned works achieve quality reconstruc-
tion only at medium or high bitrate (≥ 3 kbps). In the low-bitrate
case, excessively complex networks are necessary to learn low-
dimensional representation, impairing end-to-end training. Learning
expressive features and powerful decodes at the same time remains
a challenge.

Therefore, many low-bitrate codecs utilize a vocoder to lever-
age generative models, which resynthesize speech from existing fea-
tures, e.g., WaveNet-based codecs [13, 14], LPCNet for real-time
coding [15], GAN-empowered resynthesis [16]. Recent employ-
ment of AudioLM [1] in SoundStream as in LMCodec [17] reduces
the bitrate down to ∼1kbps. Neural feature predictor [18] applies a
generative model in the feature domain to assist LPCNet with more
efficient feature input.

We observed from pilot experiments that low-bitrate codes from
waveform codecs can preserve distinguishable speech features and
better capture essential information than the traditional speech fea-
tures at the same bitrate. Thus, it is worth utilizing the representation
learned from the end-to-end models. Meanwhile, the decoder can be
replaced with a more powerful generative model. To this end, the
proposed system consists of three modules. 1) An end-to-end codec
whose encoder performs dimension reduction and quantization at its
bottleneck; 2) A separate auto-encoder that defines a continuous and
high-dimensional latent space, and is responsible for high-fidelity
reconstruction; 3) Finally, a latent diffusion model bridges the gap
between the two feature representations. By conditioning the dif-
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fusion model with the lower-dimensional quantized code from the
end-to-end codec, we expect this model to perform generative de-
quantization and upsampling.

We opt for the diffusion model among other generative mod-
els because 1) diffusion models have shown potential in generating
natural-sounding speech and audio [19] from an extensive range of
conditions; 2) Diffusion models provide a way to generate the en-
tire feature map altogether and refine it iteratively. In contrast to the
autoregressive models, diffusion models look at a larger condition
space, which significantly increases the quality upper bound. Specif-
ically, we found that the latent diffusion model [20] surpasses a reg-
ular time-domain diffusion model under this setup, possibly because
running on the latent space offloads the model’s burden to recon-
struct raw waveforms. We explore different choices over the diffu-
sion space’s dimension in an ablation study. As diffusion models are
prone to generate over-smooth speech and hallucinate content, we
introduce a new sampling technique that adds stronger prior to the
conditional generation. We notice a concurrent work that explores
high-fidelity audio generation from the speech codec by multi-band
diffusion [21]. In comparison, our model focuses on speech gener-
ation and achieves better quality at both low- and high-bitrate cases
with only one latent diffusion model, thus more efficient with re-
spect to the model design. We call our model the latent diffusion
codec (LaDiffCodec).

2. GENERATIVE DE-QUANTIZATION WITH LATENT
DIFFUSION

Fig. 1 provides an overview of the proposed LaDiffCodec. The char-
acteristic latent diffusion process, depicted in the middle, converts
quantized codes into continuous representation.

2.1. Latent Diffusion

Diffusion models are generative models characterized by two
Markov processes: diffusion and reverse processes. The diffu-
sion process, q(x1:T |x0) =

∏T
t=1 q(xt|xt−1), corrupts clean data

point x0 by gradually adding Gaussian noise until it reaches a ran-
dom variable xT close to the standard normal distribution. Hence,
q(xt|xt−1) ∼ N (

√
1− βtxt−1, βtI), where βt is the pre-defined

noise schedule (0 < β0 < ... < βT < 1). With reparameterization,
sampling the variable of step t from the diffusion process can be
acquired by, F(x0, t) =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, 1)

and ᾱt :=
∏t

i=0(1− βi).
The reverse process pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) is

commonly represented by a parametric function, e.g., a neural net-
work. This process can be conditioned by various types of auxiliary
information.

While diffusion models succeed in many data generation tasks,
the high computational complexity limits their accessibility. Mean-
while, the models are prone to spend excessive amounts of resources
on modeling imperceptible details, especially on the multi-modality
tasks [20]. As a solution, latent diffusion models propose to operate
in the latent space z that can be learned by a pre-trained autoencoder,

x̂0 ← fdec(z0), z0 ← fenc(x0), (1)

assuming this space to be computationally preferable and perceptu-
ally equivalent to the data domain. Accordingly, the diffusion pro-
cess defines the distribution of latent variables, q(z1:T |z0), rather
than the raw data x.

2.2. Diffusion-Based De-Quantization

LaDiffCodec maps the two latent spaces, the low-dimensional dis-
crete code H and the high-dimensional continuous feature Z. The
restorative nature of this mapping requires conditional generation.
This section describes the three components of LaDiffCodec: dis-
crete coding, continuous coding, and conditional diffusion sampling.
Discrete coding: Our discrete coding module g(·) is an autoencoder-
type codec that learns the discrete code space H using its encoder
component, genc : XN → HD . It provides the discretized features
h ∈ HD , which serve as the transmission bitstream in the ordinary
codec usage. Ideally, the quantized speech tokens h should contain
sufficient information for faithful speech reconstruction. We opt for
autoencoder codecs as we believe that end-to-end training learns
more effective codes. Once trained, we discard the decoder module,
gdec : HD → XN , which is the performance bottleneck when HD is
low dimensional and discrete. Instead, LaDiffCodec repurposes this
discrete code h to condition the reverse diffusion sampling process,
which redefines the decoding process in a generative fashion. We
employ EnCodec [6] as the backbone of this discrete coding module.
Continuous coding: To de-quantize the discrete token h into a
continuous feature vector z, LaDiffCodec utilizes a latent diffusion
model defined in the continuous space Z. To this end, we pretrain
another EnCodec-like continuous autoencoder, whose encoder maps
the raw signal space X into the continuous feature space Z, i.e.,
fenc : XN → ZL, followed by a decoder that maps it back to the
signal domain: fdec : ZL → XN . A trade-off exists between dif-
ferent sizes of the continuous latent space. While a large latent di-
mension L enables high expressiveness, it also causes longer sam-
pling time and lower efficiency. Moreover, the gap between the high-
dimensional continuous space and a low-dimensional discrete space
has to be filled with upsampling layers, which brings additional ar-
tifacts. In our experiments, we investigate a few options of L to
minimize the trade-off.
Conditional Latent Diffusion: A diffusion model built on Z grad-
ually adds noise ϵt to zt in the diffusion process. During training,
a conditional neural network model estimates the posterior distribu-
tion along the de-noising (reverse) path pθ(zt−1|zt). We use the
ϵ-prediction parameterization [22],

L = Ez0,t,h(||ϵ− ϵθ(zt, t,h)||) (2)

where ϵθ(zt, t,h) is the output of the neural network with weights
θ. It predicts the noise to be removed in the sampling process, resem-
bling the gradient of data density. The quantized tokens h condition
both training and sampling stages to steer the generation.

2.3. Midway-Infilling

The original sampling algorithm proposed in denoising diffusion
probabilistic models (DDPM) [22] iteratively removes predicted
noise ϵθ from the noisy data samples, G : xt 7→ xt−1,

G(xt, t,h)=
1√

1−βt

(
xt−

βt√
1− ᾱt

ϵθ
(
xt,
√
ᾱt,h

))
+

√
βtn,

from xT to x0, where n is a Gaussian noise. T usually equals the
number of time steps used for training, e.g., 1,000. DDPM sampling
can be tedious, given the large number of sampling steps. Denoising
diffusion implicit models’ (DDIM) sampling method [23] signifi-
cantly reduces the sampling steps. However, in our task, both DDPM
and DDIM are prone to generate overly smooth samples at very low
bitrates, i.e., 1 and 1.5 kbps, with some hallucination effects, such as



Algorithm 1: Midway-Infilling
Input: Conditioning vector h, midway step τ , interpolation

ratio γ, sampling function G(·)
sτ ← h, xτ ∼ N (0, 1), xτ = (1− γ)xτ + γsτ

for t = τ . . . 1 do
st−1 = G(st, t,h) – Infilling branch
xt−1 = G(xt, t,h) – Sampling branch
xt−1 = (1− γ)xt−1 + γst−1

end
return x0

missing or replaced phonemes.
We believe the smoothing effect is caused by excessive noise

reduction and insufficient assistance from the condition. Therefore,
we propose to use another sampling technique, midway-infilling. It
improves the sampling quality and efficiency in two folds. 1) It starts
sampling from a mid-point step τ < T rather than from xT , a ran-
dom noise space, thus reducing sampling steps by 10 to 20 times
without sacrificing the sampling quality; 2) it implements a separate
conditioning branch to impose stronger conditioning during sam-
pling.

Midway-infilling is inspired by the infilling algorithm proposed
in [24]. Infilling aims to condition and steer the sampling steps on
unconditional diffusion models. In the original infilling process, an
occluded sample s0 is provided. The diffusion process runs on s0

(infilling branch) to meet the time step of reversed sampling branch
xt (sampling branch), i.e., st = F(s0, t). xt and st are then in-
terpolated with a certain ratio as the final sampling output for each
step. Akin to infilling, the proposed midway-infilling involves two
branches. The difference is, instead of providing s0, we treat the
condition feature h or its upsampled version as sτ , a midway vari-
able of the infilling branch’s Markov chain path. Accordingly, the
infilling branch runs a parallel reverse process from step τ to 0 with
the sampling branch. The interpolation happens after each reverse
step, as described in Algorithm 1.

3. EXPERIMENT SETUP

3.1. Model Design and Hyperparameter Setup

In the forward process, we use T =1000 steps and set noise sched-
ule linearly from β1 =0.0001 to βT =0.02. A U-Net-based model
parameterizes the reverse diffusion process, similar to [20, 25]. The
U-Net is built with ResNet blocks, each containing three convolution
layers and one four-head self-attention layer. The model comprises
five encoder blocks, one middle block, and five decoder blocks. The
channel dimensions of encoder blocks are [128, 256, 256, 512, 512].
Decoder blocks have the reversed order of dimensions as encoder
blocks, and the channel dimension of the middle block is 512. While
AudioLDM [25] uses FiLM conditioning, we condition the diffusion
model by the stacked discrete tokens h and model input zt, as we
found it more effective than FiLM in this task. When the dimension-
ality of the continuous and discrete code spaces do not match, i.e.,
D < L, h is firstly upsampled with transposed convolutional lay-
ers. We scale each frame of the upsampled tokens to [−1, 1] before
conditioning them on the diffusion.

We use the proposed midway-infilling method for sampling,
where the hyperparameters are shared in all bitrate cases to keep the
usage simple. We set the midway step τ = 100 and γ = 0.3. Once
latent diffusion sampling is finished, the continuous decoder takes in

the obtained sample z0 and maps it to the time-domain signal. With
a reduced sampling step (100), it takes ∼5.65 seconds to generate a
3.2-second sample.

We retrain the non-streamable version of EnCodec with the 16
kHz Librispeech dataset [26] as the discrete autoencoder. Its en-
coder and decoder use SEANet [27] as the backbone. The encoder
downsamples input through four convolution layers with strides of
size 2, 4, 5, and 8, respectively. Using transposed convolution, the
decoder upsamples the latent space in the reverse order. In addition,
we build a continuous autoencoder akin to EnCodec. We keep only
one downsampling layer with a stride size of 8 to achieve higher
dimension and, consequently, expressiveness.

3.2. Data and training

All experiments are conducted on the Libirspeech dataset, train-
clean-100 fold for training, and dev-clean for testing. Model
training runs on the 3.2s sequences. The three components, i.e., dis-
crete autoencoder (16khz EnCodec), continuous autoencoder, and
the latent diffusion model, are trained separately. When training the
latent diffusion model, both autoencoders are frozen. Our diffusion
models are bitrate-specific. For example, LaDiffCodec at 1.5 kbps
uses EnCodec’s 1.5 kbps tokens as its condition. We use Adam opti-
mizer for all the training tasks, with a batch size of 20 and a learning
rate 5× 10−5. It takes six hours to train the autoencoders and three
days for the latent diffusion model on one NVIDIA A100 GPU.

3.3. Evaluation and Ablation study

We run a MUSHRA-like subjective test [28] to compare LaDiff-
Codec with 16 kHz EnCodec at two bitrates, 1.5kbps and 3kbps. Se-
quences from a 16 kHz DAC at 3kbps are also included for compar-
ison. 13 audio experts participated in and rated ten gender-balanced
samples of 3 seconds.

All the ablation studies are evaluated with PESQ [29] on ran-
domly picked 50 samples from the test set. We notice that PESQ
does not reflect the real perceptual preference among different cod-
ing systems. However, when comparing sequences generated from
systems of the same kind, they tend to exhibit a steady trend.

4. EXPERIMENTAL RESULTS

4.1. Comparison with other codec

Figure 3 shows MUSHRA scores of different codec systems. We see
LaDiffCodec surpasses EnCodec and DAC at both bitrates. Particu-
larly, LaDiffCodec’s 1.5 kbps samples are preferred by the subjects
to the 3 kbps samples of the other codecs.

We believe that LaDiffCodec has two main traits that contribute
to its superior performance. Firstly, it recovers coding artifacts.
Lossy compression can cause various speech alterations and degra-
dation. We observe that at 1.5kbps, EnCodec starts to lose intelligi-
bility because some phonemes are not recovered precisely. DAC ex-
hibits a similar artifact at 1.5 kbps (using three quantizer cookbooks).
At 3kbps, while the intelligibility is better preserved, the baseline
codecs still produce artifacts such as subtle background noise (DAC)
or metallic and hissing sound (EnCodec). LaDiffCodec can fix se-
vere quantization artifacts by generating variables in the continu-
ous latent space. The fact that the latent diffusion process works in
the pre-trained latent space narrows its synthesis process to a more
straightforward problem. In addition, the well-trained continuous la-
tent space leads to higher speech reconstruction quality, eliminating
the non-speech artifacts and distortion.



(a) Reference (b) EnCodec@1.5kbps (c) EnCodec@3kbps (d) LaDiffCodec@1.5kbps (e) LaDiffCodec@3kbps

Fig. 2: Spectrograms of the reference speech and its coded versions by EnCodec and LaDiffCodec at 1.5kbps and 3kbps. The audio samples
of these spectra are available on the sample page. White blocks point out the example areas where LaDiffCodec eludes aliasing artifacts.
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Fig. 3: Average MUSHRA scores and their confidence intervals of
LaDiffCodec and baseline codec systems at 1.5kbps and 3kbps.
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Fig. 4: PESQ scores of LaDiffCodec using different midway-
infilling hyperparameters. The X-axis denotes the mask ratios γ
from 0 to 1. The Y-axis denotes the midway timestep τ . Values
lower than the color bar’s lower bound are clipped.

Secondly, it generates more natural-sounding speech. Fig. 2
presents spectrograms of the reference and various decoded versions.
These low-bitrate EnCodec results suffer from losing high-frequency
information due to the reduced expression space. Waveform cod-
ing, in particular, often experiences aliasing artifacts, as shown in
2b and 2c. In these spectrograms, the high-frequency area over ∼4
kHz shows a mirrored reflection of the lower frequency harmonics.
These high-frequency aliasing effects can add unnatural artifacts to
the reconstruction. In contrast, LaDiffCodec makes up some high-
frequency energy and eludes the aliasing effect. As a result, it pro-
duces a more natural and pleasant sound. As we use DAC’s public
16khz checkpoint, which is not re-trained on the Librispeech dataset,
its performance appears to be suboptimal compared to the re-trained
EnCodec in our experiments.

4.2. Ablation Studies

Hyperparameters of Midway-Infilling: This ablation explores
different settings of midway-infilling hyperparameters. Smaller
γ values correlate to less contribution from the condition branch
[sτ , ..., s0] during sampling, while a large τ means the sampling
process conducts more noise reduction. When γ = 0 and τ = 1000,
it is equivalent to DDPM’s original sampling method. With the
correct set of hyperparameters, midway-infilling gains higher PESQ
than the original DDPM sampling. The leftmost columns of each
graph present the degrading performance by reducing DDPM sam-

Strides @1kbps @1.5kbps @3kbps
[1] 1.18 ± 0.04 1.20 ± 0.04 1.77 ± 0.19
[8] 1.81 ± 0.15 1.95 ± 0.15 2.23 ± 0.17

[4, 8] 1.71 ± 0.71 2.19 ± 0.75 2.16 ± 0.69
[4, 5, 8] 1.66 ± 0.11 1.71 ± 0.12 1.84 ± 0.10

[2, 4, 5, 8] 1.49 ± 0.09 1.65 ± 0.13 1.71 ± 0.12

Table 1: Performance of diffusion models with different latent space
dimensions. The arrays in the first column present the stride sizes of
each down-sampling layer in the continuous encoder.

pling steps, with no extra infilling branch involved (i.e., γ = 0). The
rightmost columns, on the other hand, present the infilling branch’s
sole contribution to sampling. According to the PESQ score, the
best quality is obtained when sampling step τ is small and γ is close
to 0 or 1. Our perceptual rating aligns with PESQ concerning τ .
However, a large interpolation ratio γ leads to a better phoneme-
level reconstruction at the cost of less naturalness. A sequence of
speech samples regarding different interpolation ratios can be found
on our webpage.
Latent Dimensionality: Table 1 presents the PESQ scores of LaD-
iffCodec with different latent space dimensions. The total down-
sampling rate is the product of stride sizes. The first row shows
results from the ordinary (non-latent) diffusion model, which sam-
ples in the time domain with no continuous autoencoder involved.
All the experiments are made to run for the same amount of time. In
comparison, the LD models outperform the time-domain diffusion
method (stride= 1), indicating that a reduced dimension and auxil-
iary feature learning can facilitate diffusion modeling, especially in
this speech coding task. However, reduced dimensions do not always
lead to superior performance. When more downsampling layers are
added to the continuous autoencoder, the latent space starts losing
its expression power or becomes hard to model with the diffusion
process.

5. CONCLUSION

This work proposed LaDiffCodec and demonstrated the effective-
ness of integrating waveform coding-based feature learning and
latent diffusion model for high-quality, low-bitrate speech cod-
ing. By mapping the low-dimensional discrete speech token into
high-dimensional continuous space using latent diffusion, the codec
relieved the burden of upsampling and de-quantization from the de-
coder. It improved speech quality with reduced artifact and increased
naturalness. While mainly focusing on the low-bitrate scenarios, our
work potentially sheds light on the high-fidelity codec-based gen-
eration. Our models provides a solution that enables using fewer
codebooks for categorical generation, reducing the task’s difficulties
without sacrificing output sound quality.
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