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ABSTRACT

In this paper, we propose a personalized neural speech codec, en-
visioning that personalization can reduce the model complexity or
improve perceptual speech quality. Despite the common usage of
speech codecs where only a single talker is involved on each side of
the communication, personalizing a codec for the specific user has
rarely been explored in the literature. First, we assume speakers can
be grouped into smaller subsets based on their perceptual similarity.
Then, we also postulate that a group-specific codec can focus on the
group’s speech characteristics to improve its perceptual quality and
computational efficiency. To this end, we first develop a Siamese
network that learns the speaker embeddings from the LibriSpeech
dataset, which are then grouped into underlying speaker clusters. Fi-
nally, we retrain the LPCNet-based speech codec baselines on each
of the speaker clusters. Subjective listening tests show that the pro-
posed personalization scheme introduces model compression while
maintaining speech quality. In other words, with the same model
complexity, personalized codecs produce better speech quality.

Index Terms— Speech coding, neural speech coding, personal-
ization, model compression

1. INTRODUCTION

The recent advances in neural speech coding (NSC) technology
have achieved unprecedented coding gain, which relied significantly
on the decoder’s generalization power. In representative NSC ap-
proaches, a neural vocoder restores the original speech waveforms
from their compressed bitstream, often using a generative model.
For example, autoregressive models, such as WaveNet [1], have
shown transformative coding gain for very low-bitrate speech coding
(2.4 kbps [2] and 1.6 kbps [3], respectively) thanks to the WaveNet’s
advanced architecture as well as its the large model capacity (of
about 20M parameters). Indeed, the high-quality sample-by-sample
prediction of waveform signals comes at the cost of expensive infer-
ence complexity, about 100G floating-point operations per second
(FLOPS), prohibiting their use in resource-constrained devices.
There have been recent efforts to improve the efficiency of NSC
models. LPCNet [4] successfully harmonized the linear predictive
coding (LPC) and WaveRNN [5] by training the WaveRNN mod-
ule to predict the excitation of the speech, i.e., the residual of the
linear prediction, rather than the raw audio samples. Consequently,
the complexity of an LPCNet-based decoder is as low as around 3
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GFLOPS with 30 MFLOPS for encoding [6, 7] or lower [8]. Their
low arithmetic and spatial complexity, however, come at the cost of
suboptimal sound quality compared to the WaveNet decoder.

Autoencoders are another choice for a low-complexity NSC,
where the system consists of a pair of encoder and decoder modules.
With the encoder’s capability of learning the compact code repre-
sentation, the decoder can be streamlined accordingly. Soundstream
employed residual vector quantization and fully-convolutional en-
coder and decoder, outperforming traditional speech codecs [9]. Al-
though its inference runs in real-time on a single smartphone CPU, it
still requires 11 GFLOPS to decode. EnCodec, based on the Sound-
Stream model, improved sound quality further with an additional
adversarial loss [10]. It adopted a lightweight Transformer [11] for
additional coding gain but at the cost of increased algorithmic de-
lay. Recently reported NSCs introduced various advantages in low
bitrates, such as T-F codec [12] for low latency, DAC [13] and Post-
GAN [14] for high sound quality, etc., but they rarely targeted the
efficiency goal. Likewise, there is a tradeoff between the model com-
plexity and coding gain in the NSC literature, which we tackle in this
paper by proposing personalized neural speech coding (PNSC).

Personalization has shown promising results in model compres-
sion tasks for speech enhancement [15, 16, 17, 18]. A personalized
model adapts to the target speaker group’s speech trait, narrowing the
training task down to a smaller subtask, i.e., defined by the smaller
speaker group than the entire speakers in the corpus. As a result, the
personalized model can be seen as a more compact and specialized
version of the computationally complex generalist model.

In legacy speech and audio codecs, adaptive coding is a com-
monly used concept. MPEG-D Unified Speech and Audio Coding
(USAC) [19] and 3GPP Enhanced Voice Services (EVS) [20] selec-
tively use coding modules by classifying the signal characteristics.
Since each module is specialized in the specificity of the given au-
dio frame (e.g., whether it contains transient or not), these hybrid
systems outperform their predecessors. PNSC is based on similar
principles to hybrid codecs’: we postulate that there exists a special-
ized module more suitable than the others for the given input signal’s
characteristics (i.e., the test speaker’s speech trait).

In this paper, we focus on the model compression aspect of per-
sonalization, while we assume a single user at each end of the speech
communication. In addition, we aim to improve the perceptual qual-
ity of the baseline when it is compared to the PNSC model with the
same bitrate and decoder complexity. To this end, we begin from
LPCNet [4], which has been proven to be one of the most compact
decoding schemes in the context of NSC [6]. We show that per-
sonalization can introduce an additional complexity reduction to this
tight LPCNet baseline with an improved adaptation to the talker’s
personal speech characteristics. In particular, we perform cluster-
ing on the speaker embeddings learned from the LibriSpeech [21]
dataset via Siamese network-based contrastive learning [22]. Then,
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Fig. 1. The overview of the personalized NSC system used in the
speech communication scenario. Note that the utterance encoder
model G(-) could be also specialized to handle a specific speaker
group, while we leave that option to future work.

we train the LPCNet decoders, each of which is dedicated to re-
covering the corresponding cluster’s utterances. Since we assume
the talker’s identity does not change frequently, the system operates
with minimal additional overhead. In addition, the speaker-specific
decoders are trained with potential misclassification errors, making
them robust to real-world use cases.

2. PERSONALIZED NEURAL SPEECH CODEC

We propose personalized LPCNet (PLPCNet), which consists of
multiple speaker group-specific LPCNet decoders. From the sender
side, the bitstream (i.e., quantized speech features) is transmitted to
the receiver, along with speaker group index if necessary. Then, the
corresponding PLPCNet decoder is chosen on the receiver side to
reconstruct the speech utterance. In this section, we first describe
how to define speaker groups from the large speech corpus. Then,
PLPCNet is defined as a specialist version of the original LPCNet.

2.1. The Overview of the System for Speech Communication

Fig. 1 illustrates the general PNSC concept used in the speech
communication scenario, where the receiver knows which speaker
group the sender belongs to to choose the right personalized decoder.
Hence, a speaker classification decision must precede on the sender
side and be delivered to the receiver in the form of the group index.
Speaker Classification: Let our speaker encoder F (-) be a function
that converts an input speech signal s into a feature vector z that con-
tains speaker-specific discriminative information: z + F(s), z €
RP. Then, the D-dimensional speech feature vector z goes through
a softmax layer to estimate the posterior probability vector p € R®
over C total speaker groups: [p1,p2,...,pc] < softmax(z). Fi-
nally, the best group ¢* = argmaxX.c(y o ¢} Pe is selected.
Encoding: Meanwhile, the input utterance s is also fed to a sep-
arate utterance encoder G(-) to acquire a compact bitstring y <
G(s), y € {0,1}*. Although the PNSC concept extends to per-
sonalizing the generic encoder model G(-) into the c-th group, i.e.,
Q(C)(~), in this paper, we inherit the LPCNet’s simple cepstrum-
based code produced from a deterministic encoding function G(-).
Decoding: Instead, we focus on personalizing the LPCNet-based
decoder. With the received speech code y and the speaker group
index c*, the corresponding decoder is chosen to recover the original
speech s from the code y ~ & < D7) (y), where D) (-) denotes
the c-th decoder prepared ahead of time to handle the c-th speaker
group. Note that the bitstream ¥y, i.e., the quantized code, is not

necessarily the same as z because the speaker embedding is learned
to discriminate different speakers instead of conveying information
for recovering perceptually meaningful speech signals.

2.2. The Siamese Network for Speaker Embedding Learning

PNSC assumes that there is a semantically cohesive group of speak-
ers, who share similar speech characteristics. Hence, it is also as-
sumed that the variation within the subset is lower than the entire
speech corpus. Typically, the training objective of an ordinary deep
learning model is to generalize to the large data variation, requiring
a large model capacity. Conversely, we focus on a cohesive subset
of the data, where smaller models suffice.

Likewise, a reasonable grouping strategy of speakers is key to
successful personalization. Following [16], we first learn the speaker
encoder F(-) that learns discriminative speaker embeddings z. They
define the embedding space, where clustering is performed.

We employ the Siamese network principle [22, 23] to train F(+)
in a contrastive way using positive and negative pairs of speech ut-
terances. From a given set of utterances spoken by the k-th speaker
S(k), we sample two utterances s; and s;, i.e.,?,j € S(k), which the
Siamese network encoder takes as input and performs inference on
each of them, respectively: z; < F(s;), z; < F(s;). Then, z;
and z;, are compared to improve their similarity, as they originate
from the same speaker. Meanwhile, the negative pair is also sam-
pled, but from two different speakers, S®*) and S““/), respectively,
whose corresponding embeddings are supposed to be different from
each other. We represent this process as a binary cross-entropy loss:

Lemp = fz loga(z; z;) — Z log (1 — O’(ZiTZj)), (1)
i,j~s)| Z‘NSUV)’J‘NSUC'),
vk kK

where the inner product between the two embeddings is used to mea-
sure the level of agreement, followed by the sigmoid function o (-)
to turn the quantity into probabilistic values.

2.3. Speaker Clustering

To determine the C' speaker groups, we perform k-means clustering
in the embedding space defined by the speaker encoder F (), assum-
ing that the intrinsic nonlinear relationship between speakers is rep-
resented in the Euclidean space linearly. In particular, the Siamese
network F(-) is learned to represent such linear similarity (i.e., inner
products) in the latent space.

Clustering is done on the speaker embedding Z(*), which is the
average of all utterance-specific embeddings that belong to the k-th
speaker: z2(F) = \5(17’6)\ > iestk) Zi, Where |S™®)| denotes the number
of elements in the set. The resulting C centroids are represented by
(R h® | (D], each of which is the average of the speaker
embeddings that belong to the corresponding cluster, i.e., () =
m D ken(® z® where H(® denotes the c-th speaker cluster.

The offline k-means clustering process groups the speakers in
the training set into C' classes, which will serve as the ground-truth
class labels for the speaker classification task. A simple softmax
layer can convert the embedding z into a probability vector as de-
scribed in Sec. 2.1. In practice, we opt to perform classification by
finding the nearest cluster centroid of the given speaker embedding,
skipping the explicit use of the softmax layer.

During the test time, the classification result, ¢*, defines the
speaker group that the receiver has to be based on. Transmission of
c¢” takes only [log, C'] bits, e.g., 2 bits when C' = 4. If we assume
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Fig. 2. A simplified LPCNet architecture. PLPCNet controls its
complexity by adjusting the number of the GRU layer’s hidden units.

that the sender’s identity does not change frequently, sending this
kind of flag every now and then (e.g., every second) is ignorable.
In our experiments, we assume a single-talker scenario, hence the
speaker classification happens only once. We leave more dynamic
multi-talker scenario to future work.

2.4. Personalized LPCNet

The decoder consists of a set {D<1), DA ... ,D(C>}, each of
which is a specialist version of the generic LPCNet, i.e., PLPCNet.

LPCNet is a neural vocoder operating at 1.6 kbps for wide-band
speech coding. Its low bitrate is achieved by building on WaveRNN
[5] and combining it with LPC to offload the DNN’s reconstruction
task. Fig. 2 illustrates the simplified LPCNet architecture. It is
comprised of three main modules: the deterministic LPC module and
frame- and sample-rate networks. In the LPC module, the prediction
at time ¢ is obtained from the linear combination of previous speech
samples [s¢—nr, ..., s¢—1] and their coefficients [aar, . .., a1], i.e.,
Uy = fo:l amSt—m, Where M is the prediction order. In LPCNet,
the coefficients are calculated from the quantized cepstrum in the
bitstream y. Finally, the excitation is obtained from e; = s; — u.

Meanwhile, the frame-rate network converts ¥y to the frame-rate
feature vector f for every 10 ms frame. In the sample-rate net-
work, the previous speech sample 5;—1, previous excitation é;_1,
and current prediction u; are concatenated to form an input vector,
in a sample-by-sample manner. Note here that the decoder takes its
own output 5;—1 and é;_; instead of the unknown ground-truth sam-
ples s¢—1 and e;—;. It also receives the conditioning input from the
frame-rate network, f, at every frame. The sample-rate network pre-
dicts the probability over the excitation sample, P(e:), from which
the output excitation value é; is sampled. Finally, adding it to the
current LPC prediction u; generates the current speech sample 5.
Note that samples are represented in the 8-bit u-law domain.

The proposed PLPCNet is trained in a group-specific manner.
For the c-th speaker group, the estimated excitation of the ¢-th frame
bitsting y; is compared to the ground-truth excitation computed di-
rectly from the offline LPC module:

Y Le(eilled),

ieS(k) kem(e)

é: D (yy), 2)

where the cross entropy loss Lce(+) between the residual samples is
computed in the p-law space, and then summarized over all training
utterances in class c. The LPC prediction u is ignored in the loss.

-10p & Male ] —10 F 3
@ Female
715 1 1 1 715 1 1 1
—-10 0 10 —-10 0 10

(a) Speaker groups for C' = 2 (b) Speaker groups for C' = 4

Fig. 3. Clustering of speakers from different choices of C'.

Since LPCNet predicts the LPC residual, the benefit of personal-
izing it could be limited, compared to a model that works in the raw
signal domain. While it makes LPCNet a more challenging baseline
to compete with, we still expect that the LPCNet’s extended defini-
tion of input, i.e., concatenation of the raw samples and the frame-
rate feature, could be a suitable representation for personalization.

3. EXPERIMENTS

3.1. Experimental Setup

We use train-clean-100 and dev-clean folds from Lib-
rispeech [21] whose 16-bit amplitudes were sampled at 16kHz rate.
The total length of utterances in t rain-clean-100 is 100 hours,
spoken by 251 speakers. Out of them, we set aside 20 speakers for
validation. dev—-clean’s 40 speakers are used for testing.

The Siamese network F(-) employs two 32-unit GRU layers as
proposed in [16], while we train it without any noise injection. Fig.
3 shows different clustering results by varying the number of groups
C'. Each of the 231 points represents one of the K = 231 train-
ing speakers. To visualize them, the original speaker embeddings
of D = 32 are reduced to a 2D space using t-SNE [24] with the
perplexity parameter set to be 40. The subplots show that learned
embedding space provides perceptually meaningful discrimination
of speakers, e.g., when C' = 2 the clusters are formed by the gender
of the speakers. In theory, more clusters could lead to better spe-
cialization, while the performance gain achieved by personalization
saturates at some point, too, as shown in [16]. Considering the num-
ber of speakers and amount of utterances in each speaker group, we
choose to partition the training set into four groups, i.e., C' = 4.
As a result, the number of training speakers in cluster is 70, 89, 41,
and 31, respectively. Accordingly, the validation set consists of four
subsets of 4, 4, 7, and 5 speakers, respectively.

Using LPCNet’s open-sourced framework', we extract the bit-
stream from the Librispeech utterances, i.e., the quantized 18 Bark-
scale cepstral coefficients and 2 pitch parameters.

As baselines, we employ two different versions of the generic
LPCNet: large and small architectures. To this end, we build our
own PyTorch implementations of LPCNet and train them with the
entire Librispeech training fold of 231 speakers. Since the sample-
rate network’s first GRU layer is the biggest contributor to the com-
putational complexity, we vary its number of hidden units from 384
to 256, which correspond to our large (LPCNet-BL-L) and small
(LPCNet-BL-S) models, respectively. In this way, the model size
reduces from 1.234M total parameters to 0.784M, which is a 36.47%
reduction. For a fair comparison, we also run the public LPCNet'

Uhttps://github.com/xiph/LPCNet
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Fig. 4. Results of the listening test. 95% confidence intervals are
shown as upper and lower bars.

version with 384 GRU hidden units (LPCNet—-Pub-L) on the test
sequences and include the results in our listening tests.

Throughout the experiment, we opt for a batch size of 64 and
use the Adam optimizer with 81 = 0.9, B2 = 0.999, and a learning
rate of 10~2 [25]. To train PLPCNet models and our own baselines,
we also employ the gradient clipping operation to stabilize the RNN
training, whose threshold is set to be from 5 x 1072 to 1 x 10™%.
The smaller the model size and the more speakers are trained, the
smaller the threshold is used.

In addition, we train C = 4 PLPCNet decoders as described
in Sec. 2.4, but by varying the model sizes once again, resulting in
eight PLPCNet models in total (four per architecture). We denote
them by PLPCNet—-L and PLPCNet -S, respectively.

The subjective listening tests evaluate the perceptual quality of
the proposed PLPCNet models. Eight gender- and group-balanced
speakers are randomly chosen from dev—-clean. The MUSHRA-
style [26] test contains a hidden reference, a low pass-filtered anchor
at 3.5kHz, and the five systems in comparison: LPCNet-BL-L,

LPCNet-BL-S, LPCNet—-Pub-L,PLPCNet-L,and PLPCNet-S.

When the test signal is processed by PLPCNet-L or PLPCNet -5,
we use the estimated class label ¢* to choose the corresponding
group-specific decoder, which is a process that properly simulates
the real-world use case. Nine audio and speech experts participated
in the listening test, who all passed the screening process.

3.2. Experimental Results

Fig. 4 shows the MUSHRA-like listening test results. First of
all, we observe that our own PyTorch baseline LPCNet-BL-L
shows superior performance to the public LPCNet implementation
LPCNet—-Public-L, while LPCNet-BL-S catches up. We be-
lieve that it is due to the different training hyperparameters we tried,
including the gradient clipping option. In addition, it is also possible
that our models could have been optimized for the Librispeech cor-
pus, which the public LPCNet model might have to generalize to.
However, we opt to provide the results from both our own baselines
and the public model to note that we are comparing to better, thus
more challenging baselines of our own.

The main claims we make in Fig. 4 are as follows. First, we
see that the proposed PLPCNet models significantly outperform
their corresponding (i.e., same-sized) baseline models. This means
that the proposed personalization approach introduces an additional
performance gain with no cost of increased model complexity or
bitrate. We argue that it must be mainly due to the LPCNet de-
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Fig. 5. Comparison of the validation loss curves.

coder’s specialization in the speaker group that it is dedicated to.
Second, we also see that the PLPCNet—-S’s performance catches
up LPCNet-BL-L’s and their confidence intervals overlap. These
results showcase a model compression ratio of 36.47% with in-
significant performance degradation in terms of sound quality.
Third, when we compare the two model sizes, more significant
performance improvement is observed when smaller models are
in comparison (PLPCNet-S vs. LPCNet-BL-S) than the larger
models ((PLPCNet—-L vs. LPCNet—-BL-L). This trend aligns well
with the personalized speech enhancement literature: model per-
sonalization benefits compressed model architectures more than the
larger ones [15, 16, 17]. Finally, it is also worth noting that each test
sequence is handled by a selected personalized decoder, where the
choice is based on the estimated speaker class. Hence, the listening
test results encompass the potential misclassification cases, too.

In addition, Fig. 5 juxtaposes the validation loss curves of
PLPCNet-S and LPCNet-BL-S, where the GRU layer is with
256 hidden units. The PLPCNet graph is a weighted average of
validation losses, collected from all C' = 4 decoders as follows:

c
1
Lya = NZ |H5§1)|E\(/§1>»
c=1

C
N =Y, 3)
c=1

where \H5§l>| denotes the number of speakers in the c-th speaker

group in the validation set. The total number of validation speak-

ers N = 20 in our experiments. 5551) denotes the average validation
loss of the c-th speaker group, defined in eq. (2). The weighted
sum correctly accounts for the different contributions of the group-
specific validation losses depending on the size of the group. Given
this, Fig. 5 clearly shows that PLPCNet reaches lower loss values
than the corresponding LPCNet baseline, which might have led to

its improved subjective quality on the test signals as well.

4. CONCLUSION

In this paper, we proposed the personalized LPCNet as a promising
solution to compressing the NSC models. We verified the concept in
the communication scenario where one specific person was involved
on the sender side. We pre-defined four semantically meaningful
speaker groups by using discriminative speaker embeddings, and
then trained four LPCNet decoders from them, respectively. During
the test time, the optimal decoder was estimated to produce the best
reconstruction. The listening test results showed that the proposed
small PLPCNet provided similar perceptual quality to a large generic
LPCNet, achieving a 34% reduction in model size. It also provided
superior perceptual quality to the same-sized generic LPCNet. The
smaller the size was, the more sound quality improvement PLPC-
Net achieved. In future work, we will expand the personalization
concept to other NSC models and investigate its benefits in terms of
bitrate reduction. PLPCNet was the first personalized neural speech
codec proposed in the literature to our best knowledge.
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