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Abstract

In this paper we present some experiments using a deep learn-
ing model for speech denoising. We propose a very lightweight
procedure that can predict clean speech spectra when presented
with noisy speech inputs, and we show how various parameter
choices impact the quality of the denoised signal. Through our
experiments we conclude that such a structure can perform bet-
ter than some comparable single-channel approaches and that it
is able to generalize well across various speakers, noise types
and signal-to-noise ratios.

Index Terms: Speech denoising, Deep Learning, Neural net-
works, Source Separation

1. Introduction

The goal of speech denoising is to produce noise-free speech
signals from noisy recordings, while improving the perceived
quality of the speech component and increasing its intelligi-
bility. Speech denoising can be utilized in various applica-
tions where we experience the presence of background noise in
communications. A number of techniques have been proposed
based on different assumptions on the signal and noise char-
acteristics, including spectral subtraction [1] statistical model-
based estimation [2], Wiener filtering [3], subspace method [4]
and non-negative matrix factorization (NMF) [5]. In this paper
we introduce a lightweight learning-based approach to remove
noise from single-channel recordings using a deep neural net-
work structure.

Neural networks as a non-linear filter have been applied to
this problem in the past, for example the early work by [6] uti-
lizing shallow neural networks (SNNs) for speech denoising.
However, at that time constraints in computational power and
size of training data resulted in relatively small neural network
implementations that limited denoising performance.

Over the last few years, the development of computer hard-
ware and advanced machine learning algorithms enabled people
to increase the depth and width of neural networks. The deep
neural networks (DNNs) have achieved many state-of-the-art
results in the field of speech recognition [7] and speech sep-
aration [8]. DNNSs containing multiple hidden layers of non-
linearity have shown great potential to better capture the com-
plex relationships between noisy and clean utterances across
various speakers, noise types and noise levels. More recently,
Xu et al. [9] proposed a regression-based speech enhance-
ment framework of DNNSs using restricted Boltzmann machines
(RBMs) for pre-training.

In this paper we explore the use of DNNs for speech de-
noising, and propose a simpler training and denoising procedure
that does not necessitate RBM pre-training or complex recur-
rent structures. We use a DNN that operates on the spectral do-
main of speech signals, and predicts clean speech spectra when
presented with noisy input spectra. A series of experiments is

conducted to compare the denoising performance under differ-
ent parameter settings. Our results show that our simplified ap-
proach can perform better than other popular supervised single-
channel denoising approaches and that it results in a very ef-
ficient processing model which forgoes computationally costly
estimation steps.

2. Neural Networks for Spectral Denoising

In the following sections we introduce our model’s structure,
some domain-specific choices that we make, and a training pro-
cedure optimized for this task.

2.1. Network Structure

The core concept in this paper is to compute a regression be-
tween a noisy signal frame and a clean signal frame in the
frequency domain. To do so we start with the obvious choice
of using frames from a magnitude short-time Fourier transform
(STFT). Using these features allows us to abstract many of the
phase uncertainties and to focus on “turning off” parts of the
input spectral frames that are purely noise [6].

More precisely, for a speech signal s(¢) and a noise sig-
nal n(t) we construct a corresponding mixture signal m(t) =
s(t) +n(t). We compute the STFTs of the above time series to
obtain the vectors s¢, n; and m,, which are the spectral frames
corresponding to time ¢ (each element of these vectors corre-
sponds to a frequency bin). These vectors will constitute our
training data set, with m; being the input and its corresponding
s; being the target output.

‘We then proceed to design a neural network with L layers
which would output a spectral frame prediction y; when it is
presented with ||m.||. This is akin to a Denoising Autoencoder
(DAE) [10], although in this case we do not care to find an ef-
ficient hidden representation, but instead we care to predict the
spectra of a clean signal when provided with the spectra of a
noisy signal. The runtime denoising process is defined by:

b = ji (W (= 4+ b0) (1)

with [ signifying the layer index (from 1 to L), and with
hio) = ||m¢|| and y; = hEL). The function f;(-) is known
as the activation function and can take various forms depending
on our goals, but it is traditionally a sigmoid or some piecewise
linear function. We will explore this selection in a later sec-
tion. Likewise the number of layers L can range from 1 (which
forms a shallow network), or as many as we deem necessary
(which comes with a higher computational burden and the need
for more training data).

For L = 1 and f;(-) being the identity function this model
collapses to a linear regression, whereas when using non-linear
f1(+)’s and multiple layers we perform a deep non-linear regres-
sion (or a regression deep neural network).



2.2. Training Procedure

The parameters that need to be estimated in order to obtain a
functioning system are the set of W) matrices and b vec-
tors, known as the layer weights and biases respectively. Fixed
parameters that we will not learn include the number of layers
L and the choice of activation functions f;(-). In order to per-
form training we need to specify a cost function between the
network predictions and the target outputs which we will need
to optimize, and that will provide a means to see how well our
model has adapted to the training data.

For the activation function the most common choices are
the hyperbolic tangent and the logistic sigmoid function. How-
ever we note that the outputs that we wish to predict are spec-
tral magnitude values which would lie in the interval [0, c0).
This means that we should prefer an activation function that
produces outputs in that interval. A popular choice that satisfies
this preference is the rectified linear activation, which is defined
as y = sup {z,0} i.e. the maximum between the input and 0.
In our experience, however, this is a particularly difficult func-
tion to work with since it exhibits a zero derivative for negative
values and is very likely to result in nodes that get “stuck” with
a zero output once they reach that state. Instead we use a modi-
fied version which is defined as:
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where € is a sufficiently small number (in our simulations set
to 107°). This modification introduces a slight ramp starting
from —oo to € which guarantees that the derivative will point
(albeit weakly) towards positive values and will provide a way
to escape a zero state once a node is in it.

For the cost function we select the mean squared er-
ror (MSE) between the target and predicted vectors: E
lly+ — |Is¢]|[|>. Although a choice such as the KL divergence or
the Itakura-Saito divergence would have been more appropriate
for measuring differences between spectra, in our experiments
we find them to ultimately perform worse than the MSE.

Once the above network characteristics have been specified
we can use a variety of methods to estimate the model param-
eters. Traditional choices include the backpropagation algo-
rithm, as well as more sophisticated procedures such as con-
jugate gradient methods and optimization approaches such as
Levenberg-Marquardt [11]. Additionally, there is a trend to-
wards including a pre-training step using an RBM analogy for
each layer [12]. In our experiments for this specific task, we find
many of the sophisticated approaches to be either numerically
unstable, computationally too expensive, or plainly redundant.
We obtain the most rapid and reliable convergence behavior
using the resilient backpropagation algorithm [13]. Combined
with the use of the modified activation function that we present
above, it requires no pre-training and converges in roughly the
same number of iterations as conjugate gradient algorithms with
far fewer computational requirements. The initial parameter
values are set using the Nguyen-Widrow procedure [14]. For
most of the experiments we train our models for 1,000 itera-
tions which are usually sufficient to achieve convergence. The
details regarding the training data are discussed in the experi-
mental results section.

2.3. Extracting the Denoised Signal

After training a model, the denoising is performed as follows:
the magnitude spectral frames from noisy speech signals are ex-

tracted and presented as inputs. If the model is properly trained
we obtain a prediction of the clean signal’s magnitude spec-
trum for each noisy spectrum that we analyze. In order to invert
that magnitude spectrum back to the time domain, we apply the
phase of the mixture spectrum on it and we use the inverse STFT
with overlap-add to synthesize the denoised signal in the time
domain. For all our experiments we use a square-root Hann
window for both the analysis and synthesis transforms, and a
hop size of 25% of the Fourier window length.

2.4. Dealing with Gain

One potential problem with this scheme is that this network
might not be able to extrapolate when presented with data at sig-
nificantly large scales (e.g. 10x louder). When using large data
sets there is a high probability that we will see enough spectra
at various low gains to adequately perform regression at lower
scales, but we will not observe spectra louder than some thresh-
old which means that we will not be able to denoise very loud
signals. One approach is to standardize the gain of the involved
spectra to lie inside a specific range, but we can instead employ
some simple modifications to help us extrapolate better.

In order to do so we perform the following steps. We first
normalize all the input and output spectra to have the same ¢; -
norm (we arbitrarily choose unit norm). In the training process
we add one more output node that is trained to predict the out-
put gain of the speech signal. The target output gain values are
also normalized to have unit variance over an utterance in order
to impose invariance on the scale of the desired output signal.
With this modification, in order to obtain the spectrum of the
denoised signal we would have to multiply the output of that
gain node with the speech spectrum predicted from all the other
nodes. Because of the normalization on the predicted gain we
will not recover the clean input signal with the exact gain, but
rather a denoised signal that has roughly the same amplitude
modulation with a constant scaling factor. In the next section
we show how this method compares to simply training on un-
normalized spectra.

3. Experimental Results

We now present the results of experiments that explore the ef-
fects of relevant signal and network parameters, as well as the
degradation in performance when the training data set does not
adequately represent the testing data.

The experiments are set up using the following recipe. We
use one hundred utterances from the TIMIT database, spanning
ten different speakers. We also maintain a set of five noises
specified as: Airport, Train, Subway, Babble and Drill. We then
generate a number of noisy speech recordings by selecting ran-
dom subsets of noise and overlaying them with speech signals.
While constructing the noisy mixtures we also specify the sig-
nal to noise ratio for each recording. Once we complete the
generation of the noisy signals we split them into a training set
and a test set.

During the denoising process we can specify multiple pa-
rameters that have a direct effect on separation quality and are
linked to the network’s structure. In this paper we present the
subset that we find to be most important. These include the
number of input nodes, the number of hidden layers and the
number of their nodes, the activation functions, and the number
of prior input frames to take into account.

Of course the number of parameters is quite large and con-
sidering all the possible combinations is an intractable task.
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Figure 1: Comparing different input FFT sizes we see that for
speech signals sampled at 16kHz we obtain the optimal results
with 1024pts. As with all figures in this paper; the bars show av-
erage values and the vertical lines on the bars denote minimum
and maximum observed values from our experiments.
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Figure 2: Comparing different network structures we see that a
single hidden layer with 2000 units seems to perform best. En-
tries corresponding to a single legend number denote a single
hidden layer with that many hidden units. Entries correspond-
ing to two legend numbers denote a two hidden layer network
with the two numbers being the units in the first and second
hidden layer, respectively.

In the following experiments we perform single parameter
searches while keeping the rest of the parameters fixed in a set
of sensible choices according to our observations. The fixed
parameters are: input frame size 1024pts, a single hidden layer
with 2000 units, the rectified linear activation with the modifica-
tion described above, 0dB SNR inputs, no input normalization,
and no temporal memory.

For all parameter sweeps we show the resulting signal to
distortion ratio (SDR), signal to interference ratio (SIR) and sig-
nal to artifacts ratio (SAR) as computed from the BSS-EVAL
toolbox [15]. We additionally compute the short-time objective
intelligibility measure (STOI) which is a quantitative estimate
of the intelligibility of the denoised speech [16]. For all these
measures higher values are better.

3.1. Network Structure

In this section we present the effects of the network’s structure
on performance. We focus on four parameters that we find to be
the most crucial, namely input window size, number of layers,
activation function and temporal memory.

The number of input nodes is directly related to the size of
the analysis window that we use, which is the same as the size
of the FFT that we use to transform the time domain data to the
frequency domain. In Figure 1 we show the effects of different
window sizes. We see that a window of about 64 ms (1024pts)
produces the best result.

Another important parameter is that of the depth and width
of the network, i.e. the number of hidden layers and their cor-
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Figure 3: Comparing different activation functions we see that
the rectified linear activation outperforms other common func-
tions. The legend entries show the activation function for the
hidden and the output layer, with “relu” being the rectified lin-
ear, “tanh” being the hyperbolic tangent and “logs” being the
logistic sigmoid.
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Effect of temporal memory size (in frames)
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Figure 4: Using a convolutive form that takes into account prior
input frames, we note that although SIR performance increases
as we include more past frames there is an overall degradation
in quality after more than two frames.

responding nodes. In Figure 2 we show the results over various
settings ranging from a simple shallow network to a two-hidden
layer network with 2000 nodes per layer. We note that with
more units we tend to see an increase in the SIR, but that this
trend stops after a while. It is not clear if this is an effect that
relates to the number of training data points that we use or not.
Regardless the SDR, SAR and STOI seem to require more hid-
den layers with more units. Consolidating both observations we
note that a single hidden layer with 2,000 units is optimal.

We also examine the effect of various activation functions
with the results shown in Figure 3. The ones that we consider
are the rectified linear activation (with the modifications de-
scribed above), the hyperbolic tangent and the logistic sigmoid
function. For all cases it seems that the modified rectified linear
activation is consistently the best performer.

Finally we examine the effects of a convolutive structure on
the input as shown in Figure 4. We do so using a model that
receives as input the current analysis window as well as an ar-
bitrary number of past windows. The number of past windows
ranges from O to 14 in our experiments. We observe a famil-
iar pattern in the measured results, where the SIR improves at
the expense of a diminishing SDR/SAR/STOI. Overall we con-
clude that the input of two consecutive frames is a good choice,
although even a simple memoryless model would perform rea-
sonably well enough.

3.2. Robustness to Variations

In order to evaluate the robustness of this model, we test it under
a variety of situations in which it is presented with unseen data,
such as unseen SNRs, speakers and noise types.

In Figure 5 we show the robustness of this model under var-
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Figure 5: Using multiple SNR inputs and testing on a network
that is trained on 0dB SNR. Note that the results are absolute,
i.e. we do not show the improvement. All results are shown
using pairs of bars. The left/back bars in each pair show the
results when we train on raw data, and the right/front bars show
the results when we do the gain prediction.

ious SNRs. The model is trained on 0dB SNR mixtures and it is
evaluated on mixtures ranging from 20 dB SNR to -18dB SNR.
We additionally test both the method to train on the raw input
data and the method using the gain prediction model described
above. In Figure 5 these two methods are compared with the use
of the front and back bars. Note that the shown values are ab-
solute, not the improvement from the input mixture. As we see,
for positive SNRs we get a much improved SIR and a relatively
constant SDR/SIR/STOI, and training on the raw inputs seems
to work better. For negative SNRs we still get an improvement
although it is not as drastic as before. We also note that in these
cases training with gain prediction tends to perform better.

Next we evaluate this method’s robustness to data that is
unseen in the training process. These tests provide a glimpse of
how well we can expect this approach to work when applied on
noise and speakers on which it is not trained. We perform three
experiments for this, one where the testing noise is not seen in
training, one where the testing speaker is not seen in training,
and one where both the testing noise and the testing speaker
are not seen in training. For the unseen noise case we train
the model on mixtures with Babble, Airport, Train and Subway
noises, and evaluate it on mixtures that include a Drill noise
(which is significantly different from the training noises in both
spectral and temporal structure). For the unknown speaker case
we simply hold out from the training data some of the speakers,
and for the case where both the noise and the speaker are unseen
we use a combination of the above. The results of these experi-
ments are shown in Figure 6. For the case where the speaker
is unknown we see only a mild degradation in performance,
which means that this approach can be easily used in speaker
variant situations. With the unseen noise we observe a larger
degradation in results, which is expected due to the drastically
different nature of the noise type. Even then, the result is still
good enough as compared to other single-channel denoising ap-
proaches. The result of the case where both the noise and the
speaker are unknown seems to be at the same level as that of the
case of the unseen noise, which once again reaffirms our con-
clusion that this approach is very good at generalizing across
speakers.

4. Conclusions

To conclude we present one more plot that shows how this ap-
proach compares to another popular supervised single-channel
denoising approach. In Figure 7 we compare our performance
to a non-negative matrix factorization (NMF) model trained on
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Figure 6: In this figure we compare the performance of our
network when used on data that is not represented in train-
ing. We show the results of separation with known speakers
and noise, with unseen speakers, with unseen noise, and with
unseen speakers and noise.
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Figure 7: Comparison of the proposed approach with NMF-
based denoising.
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the speakers and noise at hand [5]. For the NMF model we
use what we find to be the optimal number of basis functions
for this task. It is clear that our proposed method significantly
outperforms this approach.

Based on the above experiments we can form a series of
conclusions. Primarily we see that this approach is a viable
one, being adequately robust to unseen mixing situations (both
with gains and types of sources). We also see that a deep or
convolutive structure is not crucial, although it does offer a mi-
nor performance advantage. In terms of activation functions
we note that the rectified linear activation seems to perform the
best. Our proposed approach provides a very efficient runtime
denoising process which is comprised of only a linear transform
on the size of the input frame followed by a max operation.
This brings our approach in the same level of computational
complexity as spectral subtraction, while offering a significant
advantage in denoising performance. Unlike methods such as
NMF-based denoising there is no estimation performed at run-
time which makes for a significantly more lightweight process.

Of course our experiments are not exhaustive, but they do
provide some guidelines on what structure to use to achieve
good denoising results. We expect that with further experiments
measuring many more of the available options, in both training
and post-processing, we can achieve even better performance.
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