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Abstract

This work proposes a novel approach for reducing the computa-
tional complexity of speech denoising neural networks by using
a sparsely active ensemble topology. In our ensemble networks,
a gating module classifies an input noisy speech signal either by
identifying speaker gender or by estimating signal degradation,
and exclusively assigns it to a best-case specialist module, op-
timized to denoise a particular subset of the training data. This
approach extends the hypothesis that speech denoising can be
simplified if it is split into non-overlapping subproblems, con-
trasting earlier approaches that train large generalist neural net-
works to address a wide range of noisy speech data. We com-
pare a baseline recurrent network against an ensemble of sim-
ilarly designed, but smaller networks. Each network module
is trained independently and combined to form a naı̈ve ensem-
ble. This can be further fine-tuned using a sparsity parame-
ter to improve performance. Our experiments on noisy speech
data–generated by mixing LibriSpeech and MUSAN datasets–
demonstrate that a fine-tuned sparsely active ensemble can out-
perform a generalist using significantly fewer calculations. The
key insight of this paper, leveraging model selection as a form
of network compression, may be used to supplement already-
existing deep learning methods for speech denoising.

Index Terms: speech enhancement, adaptive mixture of local
experts, model selection, neural network compression

1. Introduction
Speech denoising is a highly-studied research problem aimed at
improving speech quality and intelligibility within noisy record-
ings. Denoising methods are often assessed by the removal of
non-speech components and the minimization of any artifacts
introduced by the enhancement process. This work addresses
the specific scenario of removing non-stationary uncorrelated
background noise from a monophonic recording of a single En-
glish speaker. While there are well-established algorithms for
speech denoising—such as Wiener filtering [1], spectral sub-
traction [2], and the short-time spectral amplitude method [3]—
recent advances in deep learning technology have significantly
improved performance by reformulating speech denoising as a
supervised learning task.

Time-frequency (TF) mask estimation is a prevailing super-
vised learning strategy for speech denoising using deep neural
networks (DNN), in which each TF bin is classified into two
categories: speech and noise [4, 5]. In order to capture the tem-
poral structure inherent in speech signals, complex deep learn-
ing models incorporating recurrent neural networks (RNN) have
seen greater usage [6, 7]. TF masking algorithms can also work
for speech separation problems. A recent DNN-based unsuper-
vised learning approach known as “deep clustering” can per-
form speaker-independent separation on an arbitrary number of
sound sources [8]. Deep clustering has been shown to benefit

from jointly estimating time-frequency masks [9] or through in-
corporating spatial audio features such as phase difference [10].

The growing number of DNN-based speech denoising
methods is a consequence of the ubiquitous increase in comput-
ing power, in part due to accelerated matrix multiplications on
graphics processing units (GPUs). In order to learn highly non-
linear mapping functions, modern-day neural networks now
perform millions of calculations on millions of learnable pa-
rameters. This trend of larger DNNs with higher computational
and spatial complexity is at odds with the commercial need
for robust low-power models to work in resource-limited de-
vices. The fundamental trade-off between model performance
and model complexity is the subject of ongoing deep learn-
ing research. Popular domain-agnostic techniques for network
compression include pruning weights and filters [11, 12, 13]
and quantizing network parameters [14, 15, 16]. With re-
gards to speech denoising, bit-depth reduction has been success-
fully shown to compress fully-connected and recurrent models
[17, 18].

This paper examines an approach to network compression
by leveraging a neural network design philosophy popularly
known as “mixture of local experts” (MLE) [19]. In the MLE
procedure, an ensemble of specialist networks are indepen-
dently trained to handle a subset of all training cases. A clas-
sifier submodule, referred to as the gating network, is trained
to either select the best-suited specialist for a given input sam-
ple or calculate a weighted sum of all the specialist inferences.
Recent literature in speech separation and speech enhancement
has explored different uses for ensemble architectures–either for
multicontext feature extraction [20], for phoneme-specific en-
hancement [21], or for model selection [22, 23]–however, our
work is the first to use the MLE design as a means for reduc-
ing the number of inference-time calculations (i.e. arithmetic
complexity) of speech denoising neural networks.

Prior work has shown that the speech denoising problem
can be decomposed into independent subproblems constituting
the various dimensions along which noisy speech signals may
vary [24], while their complexity-related issues were not dis-
cussed. Our main contribution is that we constrain the MLE
model to be sparsely active, so that only one specialist is used
at a given time. This approach can reduce the total number of
calculations during denoising inference assuming that the sum
of network parameters (from the one specialist and the gating
network) are lesser than an equally-performing general-purpose
speech denoising network. Our experiments comprehensively
evaluate the sparsely active ensemble of specialists topology
and show that the savings in arithmetic complexity do not re-
sult in compromised speech denoising performance.

2. The Proposed Method
Given that the speech denoising task can be divided into mutu-
ally exclusive subproblems, we propose that it must be possi-
ble to split a complete noisy speech dataset along some latent
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Figure 1: Comparison between (a) the proposed ensemble of
specialists model and (b) the baseline model.

dimension in order to form non-overlapping subsets (i.e. clus-
ters). Although the MLE procedure is theoretically capable of
learning latent clusters in an unsupervised fashion, in this work,
we utilize prior knowledge about the problem domain to desig-
nate two latent spaces: (1) different speech degradation levels
and (2) speaker gender.

The proposed model, shown in Figure 1a, is an ensemble
of specialist networks regulated by a gating network. While
it is fundamentally possible to utilize the inferences of mul-
tiple specialists, we propose using only a single specialist in
order to bring computational complexity during inference to a
minimum. We assume that the noisy speech data can be split
into distinct subsets. Consequently, we pre-train each specialist
network to individually address one subproblem. Our experi-
ments compare the proposed ensemble model against a base-
line model, shown in Figure 1b, which is architecturally equiv-
alent to a specialist network but is trained using the entire noisy
speech training set. In the following subsections of this paper,
we define the specialist and gating modules more formally.

2.1. Specialist Networks

A monaural time-domain mixture signal x is defined as the sum
of a clean speech signal s and an additive background noise
signal n: x = s+n. The goal of speech denoising is to learn a
mapping function g which produces an estimated signal ŝ such
that g(x) = ŝ ≈ s.

A well-known objective metric for this single-channel de-
noising task is the signal-to-distortion ratio (SDR). Imple-
mented as part of the BSS eval toolkit [25], SDR expresses the
ratio of energy between a source signal and an estimate signal.
A more robust modification of SDR, known as scale-invariant
SDR (SI-SDR), uses a scaling factor α to ensure that the resid-
ual vector (between source s and estimate ŝ) maintains orthog-
onality to the source [26] as follows:

SI-SDR(s, ŝ) = 10 log10

[ ∑
t(αst)

2∑
t(αst − ŝt)2

]
. (1)

For standard SDR, α = 1; for SI-SDR, α = ŝ>s
s>s

. Both
specialist and baseline networks are trained to maximize this
metric between the recovered estimate speech ŝ and the refer-
ence clean speech s.

There are many possible ways to produce ŝ given only
x. One established approach is known as time-frequency (TF)
masking, in which models estimate a TF mask matrix Y such

that Ŝ = Y � X , where � denotes Hadamard product and
Ŝ and X are the discrete short-time Fourier transforms (STFT)
of the estimate signal and the noisy mixture signal respectively.
The mask matrix is a ratio at each TF-point in the mixture signal
belonging to either noise or speech, with values between 0 and
1 respectively. The inverse STFT transforms Ŝ from the time-
frequency domain back to the time domain ŝ. To estimate Y
through supervised learning, both specialist and baseline mod-
els target the ideal ratio mask (IRM) [27], which is defined as:

IRM =

√
|S|2

|S|2 + |N |2 (2)

|S| and |N | denote the magnitude STFT of speech and
noise respectively. IRM has been shown to work well as a
masking target assuming that the interfering noise signal n is
uncorrelated with target speech signal s [28, 29].

To focus our attention on the benefits of the ensemble phi-
losophy, with consideration for the constraints of resource-
limited environments, we design our specialist network with
unidirectional recurrent layers followed by a feed-forward
dense layer. The recurrent layers are made up of long short-term
memory (LSTM) cells [30]. The number of recurrent layers as
well as the number of hidden units per layer are adjustable ex-
periment parameters which affect the overall complexity of the
model. The specialist network takes the noisy speech magni-
tude STFT |X| as input and predicts a ratio mask matrix Y .
Subsequently, inv-STFT (Y �X) yields the denoised speech
estimate ŝ.

We note that convolutional neural networks (CNN) on time-
domain signals currently achieve the state-of-the-art perfor-
mance in source separation [31]. Despite their low model com-
plexity, convolutional architectures are able learn the sequence-
to-sequence mapping. We leave general application of our pro-
posed ensemble model to different architectures for future work.

2.2. Gating Network

The gating network is responsible for assigning an input signal
to the appropriate specialist. It introduces a classification sub-
task as overhead to the overarching denoising task, splitting the
full training dataset into some number of latent clusters.

Identifying latent clusters in a noisy speech corpus is non-
trivial. Prior works using ensemble models for speech en-
hancement have shown that specialists may be trained to de-
noise a particular phoneme [21]. This approach, which requires
training data to be phoneme-labeled, is naturally language-
dependent but also non-sparse, as multiple specialists may ac-
tively perform some computations due to the high variance of
phonemes in speech. To ensure a sparse activation of special-
ists (ideally one specialist per input signal), a more general-
ized latent clustering is preferred. For this reason, we design
two types of gating networks to classify inputs based on either
speech degradation level or speaker gender.

Similar to the specialist architecture, our gating networks
are also designed with multiple recurrent layers and a single
dense layer. However, in our current proposed model the gating
network does not make predictions frame-by-frame; after pro-
cessing the entire input sequence, the network produces a single
softmax vector p, with K elements corresponding to the num-
ber of clusters (i.e. the number of specialists). The index of
the maximum value in p should correspond to the index of the
best-suited specialist.



2.3. Ensemble Network

The proposed ensemble model combines K specialist networks
together with a gating network. First, all of the sub-networks
are independently trained. The combination of these pre-trained
modules forms a primitive ensemble, as the gating network can
already assign an incoming test example to one of the special-
ists. The output mask Y is chosen from the specialist which
corresponds to the maximum value of gating network softmax
vector p. The “hard” gating mechanism is formulated as:

Y = M (k∗), k∗ = argmax
k

pk, (3)

where M (k) denotes the predicted ratio mask matrix from
the k-th specialist.

However, this naı̈ve ensemble is sub-optimal as it lacks the
potential co-adaptation between gating and specialist networks.
For example, given the fact that the gating network cannot clas-
sify mixtures with 100% accuracy, the specialists should adapt
to the situation where it processes a misclassified sample (e.g.,
a male speech sample falls in the female speaker’s specialist).
Knowing this, we can further train the submodules in unison.
During this fine-tuning phase, the ensemble model estimates the
output ratio mask Y by performing a normalized sum over the
individual masks M (k) produced by all specialists weighted by
the gating network softmax vector p. This “soft” gating mech-
anism ensures that the ratio mask calculation is differentiable,
and is formulated as:

Y =
∑
k

pkM
(k). (4)

During the test phase, the weighted sum is replaced by the
hard-decision shown in Eq. 3. This difference between training-
time and evaluation-time computation in the ensemble architec-
ture is the crux of its efficiency; only one out of all the spe-
cialists is used to process the entire mixture spectrogram |X|,
making the total used network parameters a fraction of the to-
tal learned. We reduce the discrepancy between the hard and
soft gating mechanisms, used during testing and fine-tuning re-
spectively, by introducing a scaling parameter λ to the softmax
gating network output:

pk =
exp(λ · ok)∑K
j=1 exp(λ · oj)

. (5)

Each element of the gating network output cluster proba-
bility vector (pk) is dependent on the corresponding element of
dense layer output (ok) normalized by the sum of all dense layer
output elements. While the traditional softmax function can be
calculated using λ = 1, we elevate the sparsity of p by setting
λ = 10. This saturates p to be near-1 at a single index and
near-0 at every other index, making the weighted sum for ratio
mask Y (Eq. 4) effectively select the best-case specialist mask.
This modification of the softmax function has been successfully
used for quantizing vectors with image compression [32].

3. Experiment Setup
All models (specialist, gating, baseline, and ensemble) are
trained using a stochastic data sampling strategy which dynami-
cally mixes clean speech recordings from the LibriSpeech1 cor-
pus [33] with noise recordings from the MUSAN2 corpus [34].

1Available for download at http://www.openslr.org/12/.
2Available for download at http://www.openslr.org/17/.

This exposes the models to up to 251 unique speakers3 and 843
unique noise types4 during training. 40 unseen speakers5 and
87 unseen noise types6 are used to test the models. 5% of the
training utterances and noises are set aside for validation to help
determine training convergence.

All experiment audio files use a sampling rate of 16000 Hz.
Spectrograms are generated using the STFT with a frame size
of 1024 samples and a hop size of 256 samples. Per epoch, for
each example in the training batch, the sampler mixes a nor-
malized 1-second snippet of a random training speaker’s utter-
ance with a normalized 1-second snippet from a random train-
ing noise, chosen with uniform probability. There are 100 mix-
ture signals in a batch. Unlike the training mixtures, test mix-
tures vary in duration; this gives our models an effective RNN
lookback size of 1-second.

We assess the proposed ensemble of specialists methodol-
ogy across two latent spaces. For the signal degradation la-
tent space, we instantiate K = 4 specialists and generate noisy
speech mixtures with specific signal-to-noise (SNR) levels—
either -5, 0, 5, or 10 dB—for each of the four specialists. Sim-
ilarly for the speaker gender experiment, there are K = 2 spe-
cialists which see a gender-filtered subset of the training data
with uniformly varying input SNR values out of the four above
listed. In contrast, the baseline model must generalize to all
levels of signal degradation and all speaker genders; its training
batches consist of 100 mixed gender 1-second-long mixtures
with input SNR uniformly distributed between the four values.

All networks are optimized using the Adam optimizer [35]
with an initial learning rate of η = 0.001. The specialist net-
work uses the additive inverse of the SI-SDR metric (Eq. 1) be-
tween ŝ and s as the loss function, whereas the gating network
minimizes the binary cross entropy (BCE) metric between its
output, softmax vector p, and a ground-truth one-hot vector rep-
resenting the index of the best-suited specialist. Each network
variant is trained for approximately three hours on a NVIDIA
Titan Xp GPU, after which the validation metric is considered
to have converged.

4. Experiment Results
We report the denoised signal SI-SDR improvement for all
models averaged across 1000 test set mixtures. Figure 2a com-
pares the test signal speech denoising performance between the
four signal degradation-based specialists and the one baseline
model. It is evident that, at all mixture SNR levels, a neural
network specifically trained to denoise those mixtures can out-
perform a generalist network. This gap in performance is most
prominent with the extrema mixture levels (i.e. the -5dB and
+10dB mixture SNR cases). As the number of RNN hidden
units and layers increases, the performance gap between spe-
cialists and baseline model diminishes. With larger network
complexity, the generalist’s performance eventually matches the
specialist’s, which saturates after a particular network size.

The specialist curves in Figure 2a, 2c, and 2d set a theo-
retical upper bound to the naı̈ve ensemble model: even with
a perfect gating network, the naı̈ve ensemble cannot outper-
form the sum of its parts. The superior performance of the
naı̈ve ensemble model to the baseline comes from the fact that
each specialist focuses on a smaller subset of the original prob-

3From the librispeech/train-clean-100 folder.
4From the musan/noise/free-sound folder.
5From the librispeech/test-clean folder.
6From the musan/noise/sound-bible folder.

http://www.openslr.org/12/
http://www.openslr.org/17/
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Figure 2: Results from the signal degradation and speaker gender experiments. The LSTM component of the specialist network increases
in computational complexity going across the x-axis on all subplots.

lem with the same model capacity. In this hypothetical context
where the best-suited specialist is always selected, an ensemble
of smaller specialist networks will consistently outperform the
baseline generalists.

Therefore, the gating network’s classification accuracy mat-
ters. As shown in Figure 2b, signal degradation-based gating
networks with a smaller RNN architecture are only able to dis-
tinguish the extrema mixture levels with high confidence. In-
creasing the number of hidden units and layers brings up the
classification accuracy of the non-extrema mixture levels (i.e.
0dB and +5dB mixture SNR). Based on these results, we chose
the 128×2 gating network architecture to be used for the subse-
quent ensemble experiments, as it adequately clusters test mix-
tures (with ≈ 80% accuracy on average) while only incurring a
small computational overhead.

Figure 2c compares the averaged denoising performance of
the individual specialists, the baseline, and the ensemble mod-
els (with and without fine-tuning) across all four mixture SNR
cases. We can see that the naı̈ve ensemble improves upon the
baseline with a significant margin, but cannot pass the theoret-
ical upper bound set by the oracle choice of specialist. Still,
the naı̈ve ensemble model can compete as an efficient inference
model with the high-complexity baseline model of size 1024×2
with a simpler architectural choice, 512× 2.

Figure 2c also shows that the fine-tuning step greatly im-
proves our ensemble model, surpassing the oracle specialist up-
per bound. This suggests that through fine-tuning, the special-
ists learn to compensate for imperfect classification results from
the gating module. We can see that a fine-tuned ensemble with

a smaller specialist RNN architecture, 512×2, outperforms the
most complex baseline model of size 1024×3. This is a signif-
icant amount of computation reduced during the test time, even
considering the overhead cost of the 128× 2 gating network.

A similar trend is present in the speaker gender experiment,
summarized in Figure 2d. Since this setup consists of only two
specialists, the gating network’s job is an easier binary classifi-
cation. A 16×2 RNN architecture sufficiently classifies speaker
gender with 90% classification accuracy. Using that, the naı̈ve
ensemble achieves near-optimal performance, reaching the up-
per bound in nearly every architecture. The fine-tuning process
lifts the performance even further.

5. Conclusion
This work shows that speech denoising neural networks can
benefit from the MLE design philosophy, boosting performance
while reducing arithmetic complexity. Our specialist networks
are trained on specific partitions of a large noisy speech cor-
pus across two latent spaces: signal degradation and speaker
gender. Despite the small overhead cost of a gating network, a
naı̈ve ensemble network is shown to match the performance of
generalist denoising networks with fewer parameters i.e. fewer
inference-time calculations. Furthermore, fine-tuning the en-
semble with the inclusion of a sparsity parameter helps the
model exceed the theoretical upper bound of the oracle special-
ist. Denoised speech examples and source code for this project
are available online at http://saige.sice.indiana.
edu/research-projects/sparse-mle.

http://saige.sice.indiana.edu/research-projects/sparse-mle
http://saige.sice.indiana.edu/research-projects/sparse-mle
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