

1-4244-0216-6/06/$20.00 ©2006 IEEE

System Aspects of TV-Anytime Metadata Codec in
a Uni-directional Broadcasting Environment

Minje Kim, Minsik Park, Seung-jun Yang, Ji Hoon Choi and Han-kyu Lee

Abstract — Digital broadcasting environment in which
digitalized AV contents can be sent has a room for data
transmission as well. In this circumstance, effective
encoding method of verbose XML type TV-Anytime
metadata becomes important and also the broadcasting
environment-specific refinement of TV-Anytime
transportation specification is in great need. This paper
suggests a well-tuned framework for encoding TV-Anytime
metadata. Our TV-Anytime codec, the main subject of this
paper, includes revision of the whole TVA codec system
specification and external programming interfaces to
communicate with the external modules in our uni-
directional broadcasting head-end system.

Index Terms — TV-Anytime, Digital Broadcasting,
Personalized Broadcasting, MPEG-7

I. INTRODUCTION
TV-Anytime (TVA) [1] is becoming more popular in the

digital broadcasting area because of its powerful description
ability about multimedia contents. Its abundance causes the
significant broadcasting data services, such as Electronic
Contents Guide (ECG), content searching and acquiring, to
be more powerful. Moreover, advanced PVR functions are
possible using some of the content description metadata [2-
4] and even interactive services are available using TVA
phase 2 metadata [5] with benefit of bi-directional
communication networks.

In the digital broadcasting environment, now it is possible
to use broad bandwidth of IP network to send a bulk of
TVA metadata. However, it is not guaranteed that every
terminal is tapped into the network so that the service
providers should be prepared to serve their metadata in uni-
directional way to the consumers who are in those
conditions.

TVA suggests a systematic way to convey metadata in a
uni-directional environment [6]. It includes specific
information about encoding, carrying, encapsulating, and
managing fragmented TVA metadata. 1We were eager to
refine this architecture and adapt it to our transmission
system, and finally, resulted in some issues to be decided
when realizing this system.

This paper provides detailed realistic suggestions about
several components which compound TVA codec. TVA
codec works as a metadata encoding block of the metadata

1 Acknowledgement: This work was supported by the IT R&D program

of MIC/IITA.[2006-S082-01, Development of digital multimedia
broadcasting technology for personalized broadcasting]

management system used in the transmission head end of
our Personalized Broadcasting system for digital cable
broadcasting. Section II introduces the refined TVA codec
specification, including MPEG-7 systems, especially revised
TeM followed by section III, which offers specification of
programming interfaces to be used to communicate with
metadata management system. Section IV concludes our
works and discusses some future issues.

II. TVA CODEC REFINEMENT
This section covers the specification of the proposed

whole encoding system based on uni-directional TVA
metadata encoding system [6]. TVA recommends profiled
MPEG-7 BiM [7] with some restriction and we adopted it
thoroughly, but its lack of regarding another possibility of
compression method made us to revise MPEG-7 TeM
technology and draw it into our system. We adopted not
only TVA-profiled BiM as one of main metadata
compression tool, but the textual fragment encoding, a
revised version of MPEG-7 TeM, as another one.
Additionally, this fact led us chain revisions of the entire
system such as additional structure type, initialization
message, encapsulation structure, etc.

A. Structure Type
TVA defines container as an atomic unit of grouping and

sending fragmented metadata with related parameters. TVA
metadata container is a top-level access unit in the uni-
directional environment. For instance, in the MPEG-2
broadcasting environment, TVA metadata containers are
able to be inserted into the data or object carousel.

TVA metadata containers can be classified as two groups,
data and index containers, based on the type of content in
the container. This and following several subsections,
however, focus on the specification of data containers in
detail.

Multiple structures can be involved in a certain container.
They can be distinguished and pointed by container_header
at the first place. Table I specifies structure_type which is
an 8 bit field in the container_header identifying the type of
structure in the same container. Most structure types in
Table I have the same meanings with original TVA
definition except following ones.

 encapsulation: This structure type acts as a header of
subsequent data_repository structure. See section II.C for
more detail.
 data_repository: This structure type wraps a number of

TABLE I
STRUCTURE TYPE ASSIGNMENT

Value Description
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08 – 0xDF
0xE0
0xE1 – 0xFF

Reserved
Encapsulation
Data Repository
Index List
Index
Multi field Sub Index
Fragment Locators
Moved Fragment
TVA Reserved
TVA Init Message
User Defined

TVA fragments, which are compressed with designated
methods (e.g., BiM or textual encoding). See section II.D
for more detail.
 TVA Init Message: This structure type conveys revised

version of TVA-init message as a structure. See section
II.B for more detail.
In the container_header there is a field, structure_id,

which is dedicated to identify multiple occurrences or data
type of a certain structure type. At first, we used a reserved
value 0x02 for identifying the data repository encoded by
the textual fragment encoding method. The other additional
structure type, TVA Init Message, occurs only once in a
fragment stream so that its structure_id has no meanings.

B. TVA Init Message
TVA does not specify the way to convey TVA-init

message, but it should be ready for the terminal before
starting to decode any fragment. In order to meet those
needs, we define the TVA Init Message structure type and
assign a certain exclusive container_id value, zero, to the
container which has TVA Init Message structure in it. From
now, we will refer this type of container as TVA Main
Container.

Table II shows revised definition of TVA-init message. In
our system TVA-init message occupies a structure of TVA
Init Message type in the TVA Main Container with some
revised fields. At first, we manipulated user defined values
of EncodingVersion field. (See Table III.) The values 0x10
and 0x11 are indicators for textual fragment encoding,
which mean the fragments in the stream are compressed by
GZip or not, respectively.

Another additional field is CharacterEncoding field. In
the TVA standard framework, if the EncodingVersion field
has a meaningful value, such as 0x01, CharacterEncoding
field conveys the character encoding scheme for all textual
data used within the TVA metadata fragment stream. The
TVA standard framework, however, does not consider
another possibility of encoding version and we added one,
so that a supplementary field for our textual fragment
encoding is needed. This fact is represented as a conditional
operation when the EncodingVersion equals that textual
case.

TABLE II
DEFINITION OF TVA INIT MESSAGE

Syntax No. of Bits Mnemonic

TVA-init {
 EncodingVersion
 IndexingFlag
 reserved
 DecoderInitptr
 if(EncodingVersion == ‘0x01’) {
 BufferSizeFlag
 PositionCodeFlag
 reserved
 CharacterEncoding
 if (BufferSizeFlag == ’1’) {
 BufferSize
 }
 }
 if(IndexingFlag) {
 IndexingVersion
 }
 if(EncodingVersion == ‘0x10’ ||

EncodingVersion == ‘0x11’) {
 CharacterEncoding
 }
 Reserved
 DecoderInit()
}

8
1
7
8

1
1
6
8

24

8

8

0 or 8+

uimsbf
bslbf

bslbf

bslbf
bslbf

uimsbf

uimsbf

uimsbf

uimsbf

bslbf

TABLE III

VALUES FOR THE ENCODINGVERSION PARAMETER
Value Description

0x00
0x01

0x02 – 0x0F
0x10
0x11
0x12 – 0xFF

Reserved
TVA MPEG_7 profile (BiM)
ISO/IEC 15938-1
TVA reserved
GZip encoded
No Encoding i.e. raw XML Index
User defined

DecoderInit() element is substituted by a proper format of

DecoderInit message which is dependant on the encoding
method specified in the EncodingVersion field. In the case
of BiM (EncodingVersion = 0x01) we take the form as
specified in [7] with TVA profile. If the EncodingVersion is
indicating the case of textual fragment encoding, namely
0x10 or 0x11, the system replaces the DecoderInit() element
with specially designed DecorderInit message. Table IV
shows the detail of our Textual_DecoderInit message which
is used to initialize the fragment stream whose data are
encoded with textual fragment encoding.

We borrowed this Textual_DecoderInit message structure
from [8]. The fragment_type_identifier notifies decoders of
the fragment types used in the system along with their
XPath information and binary identifiers. DVB’s ESG is
defining its own fragment types, but we take the basic TVA
fragment types instead of them. Service provider assigns
zero to the num_fragment_types field in order to inform
decoder when there is no use of user-defined fragment so
that the fragment type notification is not needed.

The additional fragment_type_identifiers should take
values starting from 0x0022 to 0xFFFE since the other ones

TABLE IV
DEFINITION OF TEXTUAL DECODER INIT MESSAGE

Syntax No. of
Bits Mnemonic

Textual_DecoderInit () {
 version
 length
 num_namespace_prefixes
 for(i=0; i<num_namespace_prefixes; i++) {
 prefix_string_ptr
 namespace_URI_ptr
 }
 num_fragment_types
 for(i=0; i<num_fragment_types; i++) {
 xpath_ptr
 fragment_type_identifier
 }
}

8

8+
8

16
16

16

16
16

uimsbf

vluimsbf8
uimsbf

uimsbf
uimsbf

uimsbf

uimsbf
uimsbf

are already occupied for TVA basic fragment types, such as
0x0001 representing ProgramInformation fragment type.
These pre-defined identifier values for basic fragment types
are originally used for the index container. (See table 7 in
[6].)

The above TVA-init message definition is sent as a
structure of data container, TVA Main Container, with the
structure type value 0xE0. TVA Main Container also
contains several other data_repository type structures. The
first data_repository contains strings which are pointed by
certain pointer fields in the TVA Init Message. For example,
xpath_ptr field in Textual_DecoderInit message is a byte
offset from the start of the string type first data_repository
to the XPath string related with the fragment type of current
loop. In this case, this data_repository has structure_id
equal to 0x00, which means string_repository. String type
data repository is originally used in the index container, but
we borrowed it for our use along with basic
fragment_identifier values. Another data_repository occurs
in the TVAMain Container when there is a TVAMain
fragment to be sent. In this optional case, structure_id
indicates the encoding type of this fragment.

C. Encapsulation
TVA provides encapsulation structure which explains

subsequent data_repository. Encapsulation structure takes a
hybrid form of a header followed by iterative entries.
Encapsulation_header designates specific reference format
of following fragments. TVA allocated 0x00 as reference
format of BiM encoded fragment and we additionally
assigned a user-defined value 0xE1 for the
textual_fragment_encoding.

Each encapsulation_entry contains reference, version and
id of related fragment. Fragment_reference() element is an
offset in bytes from the start of the data_repository to the
first byte of referred fragment. Of course there is a
possibility that the data_repository is textual fragment
encoding format, but this offset-based reference format
remains consistent in that case.

D. Data Repository
Data_repository is a structure type for sending actual

fragment data or key values, but we do not cover the
string_repository case for indexing key values in this paper
(another usage of string_repository has been already
described in the former clause).

Structure_id field in the container_header decides which
type of data the data_repository carries. Table V defines the
syntax of data_repository including the additional
possibility of textual_fragment_repository encoded with the
textual fragment encoding scheme, which will be described
below.

All fields in the data_repository follow TVA
specification, but textual fragment repository needs a
particular definition like in Table VI and VII. Table VI
shows the iterative form of data_repository and each of its
fragment entry takes the fields in Table VII, which have
following meanings:

 fragment_type: The fragment type identifier value of
each fragment entry. The identifier values could have been
already defined by TVA as basic ones or additionally
defined by service provider in Textual_DecoderInit.
 data_length: This field inform decoders of the length

TABLE V
DEFINITION OF DATA REPOSITORY

Value
data_repository () {
 if (structure_id == 0x00) {
 string_repository()
 }
 else if (structure_id == 0x01) {
 binary_repository()
 }
 else if (structure_id == 0x02) {
 textual_fragment_repository()
 }
 else {
 user_defined_data_structure()
 }
}

TABLE VI
DEFINITION OF TEXTUAL FRAGMENT REPOSITORY

Syntax
textual_fragment_repository () {
 for(i=0; i<fragment_count; i++) {
 textual_fragment()
 }
}

TABLE VII
DEFINITION OF TEXTUAL FRAGMENT
Syntax No. of Bits Mnemonic

textual_fragment () {
 fragment_type
 Data_length
 for(i=0; i<Data_length; i++) {
 data_byte[i]
 }
}

16
8+

uimsbf

Vluimsbf8

container_header
structure_type==0xE1
structure_type==0x02
structure_type==0x02

TVA Init Message
(Including Textual_Decoder Init)

data_repository
structure_id==0x00

data_repository
structure_id==0x02

 a b
Fig. 1. Example of structure organization of data containers: a – a
TVAMain Container, b – a general data container

of following fragment data in byte.
 data_byte: XML type TVA metadata fragment which

might be compressed by GZip or not.

E. Metadata Container Example
The specific scheme to send metadata container is beyond

the coverage of this paper, but the there are some points
associated with our topic. In our system metadata containers
are transported by profiled object carousel and the naming
of container file is tightly coupled with the container id. We
also defined several extensions to indicate the type of
container, e.g., “.d” for data container file, “.i” for index
container file and “.b” for the mixed one.

Fig. 1 shows simplified organizations of a TVAMain
Container and a general data container to give you an idea
about the constitution of related structures. One can catch up
our detailed specification of textual fragment encoding and
related revision of TVA framework by looking at Fig. 2.

Note that there is no command field in the container that
denotes what the decoder does with a certain fragment. In
our policy, decoder decides to add the fragment if its id is a
brand new one. If the decoder already has a fragment which
has the same id with the one of in the input stream, decoder
should compare their version to decide whether ignore or
replace it. What if a fragment in the decoder is no longer
transmitted? Then the decoder abandons it.

III. USER INTERFACES
There are several interfaces which are used to enter our

TVA codec. Next several clauses categorize those interface
methods. We designed a C++ class, TVAManager, which is
responsible for interfacing with external modules. All the
interface methods are members of an object instance of
TVAManager class. This object instance is an access points
for several TVA metadata services. Metadata service
concept is caused by the needs of service provider who will
want to separate their metadata into several groups based on
their goal of metadata service. Our system introduced this
concept with its identification scheme.

A. Initializing Interfaces
 TVAManager(int NumberOfServices, int *ServiceIDs,

int *InitialContainerNums, int MaxContainerSize): This is

a constructor method of the TVAManager class which
initializes the number of metadata services and their IDs,
initial blank container numbers, maximum size of those
containers.
 void SetTVAInit(int seviceID,TVAInitDataType TVAInit,

TextualDecoderInitDataType TextualDecoderInit): This
method delivers several parameters to generate TVA Init
Message structure. TVAInit has essential fields to teach
TVA codec which encoding version and character
encoding to use, whether to use index or not, for example.
The next parameter contains fields used to construct
Textual_DecoderInit(). SetTVAInit method is overridden
by two other versions. User can use BiMDecoderInit
instead of TextualDecoderInit when the encoding_version
field of TVAInit represents that this metadata service is
compressed by MPEG-7 BiM. Even the last parameter is
allowed to be omitted if the user just wants to use default
setting. Note that user have to designates which specific
metadata service will be initialized with this method by
assigning proper value to the serviceID parameter.

B. Generating Interfaces
 void CreateTVAMainContainer(int serviceID): This

method actually generates a TVA Main Container file for a
particular metadata service.
 void CreateContainer(int numberOfFragment, string

payloadFileName, bool *command, int *contextValue, int
*fragmentID, int *fragmentVersion, int *serviceID, int
*containerID, int *containerVersion): This method creates
or edit general data container. Essential input from
external modules is usually a bulk of fragments, which are
segmented (not valid) XML document. The second
parameter, payloadFileName, provides path information
of the input fragments file. Each fragment in the input file
has its corresponding information and the other parameters
give this information by array type. command carries an
array whose i-th element describes operation type of i-th
fragment in the container file (e.g., add, replace, and
delete). contextValue array tells fragment type identifier
values of every fragment. fragmentID, fragmentVersion
and corresponding metadata service id information is also
passed on. containerID and containerVersion parameters
are needed when the external module has current
distribution of all the fragments over containers and wants
to designate the container level location of fragments. The
external caller can always maintain this mapping
information in all the cases since the acquiring interface
(see clause III.C), which has to be called successively
right after the calling of createContainer, returns
allocation table of fragments. Note that the first call of this
method omits the last two parameters.

C. Acquiring Interface
 ServiceInfoType GetContainers (int serviceID): This

method returns mapping information between generated

container_header
structure_type==0x01
structure_type==0x02

encapsulation
data_repository

structure_id==0x02

Internal features of container Internal features of structure Values of structure fields

container header

structure_type 0x01(encapsulation)
structure_id XXX
structure_ptr XXX
structure_length XXX
structure_type 0x02(data_repository)
structure_id XXX
structure_ptr XXX
structure_length XXX

encapsulation
structure

encapsulation
header

reserved_other_use XXX
Reserved XXX
fragment_reference_format 0xE1 (Reference to a Textual Fragment)

encapsulation
entry

fragment reference() textual_fragment_ptr offset of the first fragment
fragment_version XXX
fragment_id XXX

encapsulation
entry

fragment reference() textual_fragment_ptr offset of the second fragment
fragment_version XXX
fragment_id XXX

Data
Repository

Textual
Fragment

fragment_type 0x0001 (ProgramInformation)
data_length XXX
data_bytes XXX

Textual
Fragment

fragment_type 0x0002 (GroupInformation)
data_length XXX
data_bytes XXX

Fig. 2. Example of data container having two fragments

containers and fragments for a specific metadata service.
The return value also provides path information of
generated containers so that the external module can take
and send them to the end users eventually.

D. Data Structure
There are several data structures which act as sources of

initialization messages: TVAInitDataType for TVA Init
Message, TextualDecoderInitDataType for
Textual_DecoderInit and BiMDecoderInitDataType for
binary DecoderInit. Of course these are specially designed
for our system, but we do not cover their details since their
fields directly reflect the initialization messages above.
Instead of that, this clause shows some data structures which
finally organize hierarchical mapping table of fragments and
containers in a metadata service.

 typedef struct {int FragmentID; int FragmentVersion;
int FragmentContextValue; string FragmentPayload;}
FragmentInfoType: FragmentInfoType C++ structure
contains the whole information about a certain fragment,
e.g. its 24bit ID, version, type identifier value, and real
fragment body in segmented XML document form.
FragmentPayload is used internally to maintain real body
of fragments, but it does not actually have to have a value
when it is involved in returning value of GetContainers
method since the fragment body data is needless
information in order to know the distribution of fragments.
 typedef struct {bool IsTVAMainContainer; int

ContainerID; int ContainerVersion; int
NumberOfFragments; FragmentInfoType *FragmentInfo;
string ContainerFilePath} ContainerInfoType:
ContainerInfoType tells us about a certain container with

its expressive fields. This type also contains an array
element of FragmentInfoType which is a current list of
fragments contained in this container. ContainerFilePath
is an access point of generated container file for external
caller and IsTVAMainContainer flag teaches us whether
this container is TVAMainContainer or not.
 typedef struct {int NumberOfContainers;

ContainerInfoType *ContainerInfo; int ServiceID;}
ServiceInfoType: Each generated ServiceInfoType variable
corresponds to one metadata service. ContainerInfoType
array explains ID and version information of each
container, and where they are. We have already seen this
ContainerInfoType carries involved fragment information,
FragmentInfoType, as its array element. External module
uses this structure in order to synchronize its own
mapping information with TVA codec.

E. Execution Example
This clause provides a sequence of calling examples from

the initialization to acquisition
 TVAManager TVAManager(*numberOfServices,

*serviceID, *maxContainerNums, maxContainerSize):
Firstly, this method constructs an instance of
TVAManager class in order to create initial blank
containers.
 ServiceInfo = TVAManager.GetContainers(serviceID):

The caller gets initialized status of TVA codec right after
creating a number of TVAManager instances by calling
this method. It returns initialized number of containers,
container IDs and container versions starting from zero for
each case of metadata service. Note that the constructor of
TVAManager is designed to create one TVAMain
Container template. The requirement is fulfilled by setting

IsTVAMainContainer flag bit on in the ContainerInfoType
variable whose container ID is zero.
 TVAInitDataType TVAInit: Next, the caller needs to

declare a variable of TVAInit data type and assign proper
values to the internal fields. As the occasion demands,
BiMDecodeerInitDataType or
TextualDecoderInitDataType variables are made with this.
 TVAManager.SetTVAInit(serviceID, TVAInit): In this

step, the caller creates TVA Init Message of a certain
metadata service using the TVAInit variable created in the
previous step. Default decoder init message is generated if
above parameter set is used, but user can deliver a
specified decoder init message by using other overridden
versions of this method if necessary.
 TVAManager.CreateTVAMainContainer(serviceID):

An actual TVA Main Container file is created.
 TVAManager.CreateContainer(parameter set 1): This

is the first allocation of fragments into a container file so
that it does not designate specific containers and that is
why the parameter set 1 does not include container IDs.
Fragments are evenly allocated to initial blank containers.
 ServiceInfo=TVAManager.GetContainers(serviceID):

From now, the external caller should catch up with the
distribution of fragments. This acquiring process must be
called right after every CreateContainer, regularly. The
returned ServiceInfo data is used by the subsequent call of
CreateContainer to decide where to place a new fragment
or to detect where the fragment to be updated is located.
 TVAManager.CreateContainer(parameter set 2): Now

the external module can designate specific location of
fragment to be updated, added, or deleted. The second
overridden parameter set surely has correspondent
container information for every fragment.
 ServiceInfo = TVAManager.GetContainers(serviceID):

The purpose of this calling is the same with the prior one.

IV. CONCLUSION
This paper suggests practical approaches about some

implementation issues used in our digital cable broadcasting
environment. There are still ongoing discussions about
managing metadata, such as integrated maintenance of
fragment metadata when they are used both in uni-
directional and bi-directional broadcasting environments. In
other words, service providers who want to share TVA
metadata between their various broadcasting service types
should establish proper metadata management policies.

REFERENCES
[1] The TV-Anytime, “TV-Anytime Forum,” http://www.tv-anytime.org/,

2007.
[2] S. Lim, J. Choi, J. Seok and H. Lee, “Advanced PVR architecture

with segment-based time-shift,” International Conference on
Consumer Electronics, 2007. Digest of Technical Papers.

[3] ETSI TS 102 822-2 V1.3.1, “Broadcast and On-line Services: Search,
select, and rightful use of content on personal storage systems ("TV-
Anytime");Part 2: System description,” 2006.1

[4] ETSI TS 102 822-3-1 V1.3.1, "Broadcast and On-line Services:
Search, select, and rightful use of content on personal storage systems
("TV-Anytime"); Part 2: Metadata; Sub-part 1: Phase 1 – Metadata
schemas," 2006. 1

[5] ETSI TS 102 822-3-3 V1.3.1, "Broadcast and On-line Services:
Search, select, and rightful use of content on personal storage systems
("TV-Anytime"); Part 3: Metadata; Sub-part 3: Phase 2 – Extended
metadata schema, " 2006. 1

[6] ETSI TS 102 822-3-2 V1.3.1, "Broadcast and On-line Services:
Search, select, and rightful use of content on personal storage systems
("TV-Anytime"); Part 3: Metadata; Sub-part 2: System aspects in a
uni-directional environment," 2006. 1

[7] ISO/IEC 15938-1, “Information Technology — Multimedia Content
Description Interface — Part 1: Systems,” 2002

[8] ETSI TS 102 471 V1.2.1, “Digital Video Broadcasting (DVB); IP
Datacast over DVB-H: Electronic Service Guide (ESG),” 2006.11

Minje Kim is a member of research staff working on
multimedia technologies for interactive and
intelligent digital broadcasting in ETRI, Korea. He
got his B.S. degree from Ajou University and M.S.
degree from Postech, in computer science, in 2004
and 2006, respectively. His research is based on
statistical machine learning and he is widening his
application area from signal processing, multimedia

broadcasting and user-friendly multimedia consuming systems.
Minsik Park received the BS degree in electrical
engineering from Kwangwoon University of Seoul,
Korea in 1997 and the MS degree in mechatronics
from Kwangju Institute of Science and Technology,
Gwangju, Korea in 1999. Since 1999, he has been a
senior member of research staff in
ETRI(www.etri.re.kr), where he has developed an

advanced digital television technology such as data broadcasting and
personalized broadcasting.

Seung-Jun Yang received the BS degree in computer
science from Suncheon National University, Korea in
1999 and the MS degree in computer science from
Chonnam National University, Korea in 2001. Since
2001, he has been a senior member of research staff in
Broadcasting Media Group of ETRI, where he has
developed an advanced digital television technology
such as data broadcasting and personalized

broadcasting. He has been involved in making domestic personalized
broadcasting standard, transmission and reception standard for terrestrial
personalized broadcasting, as a member in Telecommunications
Technology Association. His research interests include TV-Anytime
metadata, personalized broadcast systems, and metadata generation.

Ji Hoon Choi received the B.S and the M.S degrees
in electronic engineering from Kyunghee University,
Suwon, Korea, in 1999 and in 2001, respectively. In
2001, he joined the Data Broadcasting Research
Group in ETRI(Electronics and Telecommunications
Research Institute, Deajeon, Korea, where he have
been working on the interactive data broadcasting
system. His research interests are the data

broadcasting and network QoS.
Han-kyu Lee received the BS and MS degrees in
electronics engineering from Kyungpook National
University, Daegu, Korea, in 1994 and 1996,
repectively. In 1996, he joined Electronics and
Telecommunications Research Institute(ETRI),
Daejeon, Korea, where he has worked for research
and development of broadcasting and multimedia
technologies. Since 2005, he has served as team

leader for Personalized Broadcasting Research Team of ETRI. His main
research intrestes are in the areas of signal processing, intelligent and
interactive systems for multimedia.

