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ABSTRACT:
A personalization framework to adapt compact models to test time environments and improve their speech

enhancement (SE) performance in noisy and reverberant conditions is proposed. The use-cases are when the end-

user device encounters only one or a few speakers and noise types that tend to reoccur in the specific acoustic envi-

ronment. Hence, a small personalized model that is sufficient to handle this focused subset of the original universal

SE problem is postulated. The study addresses a major data shortage issue: although the goal is to learn from a spe-

cific user’s speech signals and the test time environment, the target clean speech is unavailable for model training

due to privacy-related concerns and technical difficulty of recording noise and reverberation-free voice signals. The

proposed zero-shot personalization method uses no clean speech target. Instead, it employs the knowledge distilla-

tion framework, where the more advanced denoising results from an overly large teacher work as pseudo targets to

train a small student model. Evaluation on various test time conditions suggests that the proposed personalization

approach can significantly enhance the compact student model’s test time performance. Personalized models outper-

form larger non-personalized baseline models, demonstrating that personalization achieves model compression with

no loss in dereverberation and denoising performance. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Real-world speech signals are often corrupted by a

varying level of interfering noise and reverberation, which

can be detrimental to the performance of audio applications.

Hence, speech enhancement (SE) algorithms are an essential

component incorporated into the audio applications such as

automatic speech recognition, diarization, voice-over-IP,

and transcription (Boll, 1979; Ephraim and Malah, 1984;

Gannot et al., 1998). Among these potential applications, in

this paper, we focus on the direct use of the enhanced speech

for voice communication, i.e., improving the perceptual

speech quality of the end user is our goal.

Recent advancements with deep neural networks

(DNNs) for SE have shown superior performance compared

to traditional machine learning and signal processing meth-

ods (Chazan et al., 2017; Wang and Chen, 2018; Xu et al.,
2014). However, these state-of-the-art applications require

significant memory and computational bandwidth, rendering

them difficult for deployment onto devices for practical

uses. Resource-constrained devices, such as hearing aids or

wearable devices, cannot efficiently handle real-time infer-

ence tasks for the SE applications when the models are with

multilayered complex architectures.

Consequently, research in model compression methods

have gained interest to address the practicality of deep

learning architectures for real-time applications. Common

compression methods include quantization to reduce the bit-

width (Bhalgat et al., 2020; Jacob et al., 2018), pruning to

induce sparsity in model weights (Frankle and Carbin, 2018;

Han et al., 2016), and knowledge distillation (KD) to distill

larger teacher models onto smaller student models (Hinton

et al., 2015). These methods, such as quantization, pruning,

and KD, have shown great promise in reducing the model

size and complexity while minimizing the drop in generali-

zation performance. However, this kind of compression

method can be seen as context-agnostic as they do not use

the specificity of the test time context. Instead, they tend to

seek a general-purpose compression technique that works

reasonably well in various real-world test conditions. As a

result, a certain level of performance drop is inevitable after

compression.

In this paper, we aim at developing a context-aware
DNN compression method for SE. We envision that a com-

pressed model can reduce its run-time complexity without

losing its performance if it focuses on a particular test envi-

ronment. We contrast the proposed concept and the ordinary

DNN-based SE models, which are typically designed as

general-purpose frameworks with a large architecture. A

DNN’s large capacity is fully employed when it is trained on

a large training set that consists of various speakers and noise

sources, generalizing well to unseen test time conditions,

e.g., different speakers, noise sources, signal-to-noise ratios

(SNRs), and room acoustics. In some practical use-cases,a)Email: minje@illinois.edu
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though, it suffices for the enhancement model to perform

well only for the specific test time context. For instance, a

family-owned smart assistant device sitting in the living

room needs to perform well only for the family members’

voices and their home acoustics but not necessarily for the

other situations. Compared to the general-purpose SE model,

the generalist, our context-aware compression method can

allow a model to adapt to the specific speakers and their

acoustic context, overcoming the generalization losses. We

call this type of context-aware SE model a personalized
speech enhancement (PSE) system. Because the test time

context contains limited variability, a small personalized

model can even outperform larger and more complex univer-

sal generalist models, demonstrating personalization as a

form of model compression.

The proposed PSE models achieve context-awareness

by reducing the domain mismatch between the training and

test datasets. The topic of domain adaptation has been an

active area of research in machine learning. One common

procedure for domain transfer is regularizing the differences

between the learned representations of source and target

datasets. It has been applied for emotion, speech, and

speaker recognition (Deng et al., 2014; Sun et al., 2017).

However, these applications rely on ample target data,

which cannot be assumed if the target problem is narrowly

defined as in our PSE cases. Few-shot adaptation can be a

solution as it requires only a small amount of ground-truth

signal (Sivaraman and Kim, 2022). However, it can be chal-

lenging to obtain ground-truth user information due to

recent privacy infringement, data leakage issues. For exam-

ple, the advancement in DeepFake technology increased

people’s concern toward releasing personal information

(Rochford, 2018). Meanwhile, with user compliance, the

user enrollment phase can obtain trigger phrases from the

users, but there is no guarantee that these recordings are

clean enough to be used as the target of PSE.

In contrast to aforementioned approaches, zero-shot

learning is a solution suitable for training tasks when no

additional labeled data are available (Wang et al., 2019;

Xian et al., 2018). In the context of personalization, a zero-

shot approach means that it does not require test users’ clean

speech data or their home acoustic environment while its

goal is still to adapt to the test time specificity. Zero-shot

learning is an active research topic for classification tasks,

where test time prediction is performed by computing auxil-

iary information (Larochelle et al., 2008; Palatucci et al.,
2009; Romera-Paredes and Torr, 2015). Similarly, zero-shot

learning in the speech and audio classification applications

extracts semantic properties or articulatory distribution to

obtain labels during test time (Choi et al., 2019; Dauphin

et al., 2013; Li et al., 2020).

However, zero-shot learning for SE has not been widely

studied yet. In Sivaraman and Kim (2020, 2021), a mixture

of local expert model is introduced as a zero-shot solution to

test time adaptation of a SE model. It achieves the adapta-

tion goal by employing an internal classifier to select the

most suitable one out of predefined specialist models for a

given noisy test signal, selecting a predefined specialist

model for a given noisy test signal. Although it is a valid

adaptation method, it only works on a few predefined con-

texts, i.e., varying input SNR levels, the gender of the speak-

ers, and predefined speaker groups, rather than actively

learning from the test time speaker’s personality or the

unique context. In Sivaraman et al. (2021), self-supervised

learning methods are proposed to achieve PSE, where a data

purification algorithm identifies clean speech frames from

test time noisy speech. Although it achieves the PSE goals,

it is not fully using the test time observations, which can be

rare. Moreover, the data purification method does not apply

to the dereverberation problem. Other works introduce a

zero-shot solution for deep clustering-based speech separa-

tion models to estimate absent ground-truth labels. Provided

a multichannel input, the affinity matrices were estimated

through unsupervised spatial clustering or by using phase

difference features (Drude et al., 2019; Tzinis et al., 2019).

However, as a result of the sheer size and inference costs,

deep clustering models are difficult to fit on small devices.

In addition, these models are typically for speech separation

problems rather than SE.

In this paper, we present a zero-shot learning approach

to personalization for joint dereverberation and denoising

based on the KD framework (Hinton et al., 2015). As a

zero-shot learning method, it does not ask for clean ground-

truth signals from the user while it still aims at enhancing

noisy reverberant mixtures. Because its goal is to train a

small specialist model for a particular user’s speech and

recording environment, it qualifies as a personalization

method. For zero-shot learning approaches implemented via

student-teacher strategies, it is common to use data synthesis

techniques through generative adversarial frameworks,

where the generator produces fake samples (Chen et al.,
2019; Micaelli and Storkey, 2019; Ye et al., 2020). Pseudo

samples can be also synthesized using activation or output

statistics of trained teacher models (Lopes et al., 2017;

Nayak et al., 2019) among many others (Chawla et al.,
2021; Nayak et al., 2021). Instead of including an intermedi-

ate data synthesis step, our proposed model directly uses the

teacher model’s outputs as if they were ground-truth targets.

Previous works have successfully applied KD to develop

compact SE systems (Hao et al., 2020; Nakaoka et al.,
2021; Subramanian et al., 2018; Tu et al., 2019). Under the

KD framework, the basic assumption is that the teacher

model’s large computational capacity guarantees the gener-

alization goal. We extend this concept to a novel zero-shot

learning approach for PSE. As the teacher model works well

in most test time environments, we consider its excellent SE

results as if they were the target clean speech from the stu-

dent model’s perspective. That way, we can turn any noisy

and reverberant test signals into labeled training examples

by passing them through the teacher model. In this process,

the teacher model remains as a generalist model, whereas

the student model can use the teacher’s generalization power

to learn from the test time input signals, fulfilling the zero-

shot learning condition.
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Using a KD learning paradigm enables us to leverage

noisy unlabeled data and obtain their corresponding soft tar-

gets generated by the teacher model. In this paper, we focus

on domain adaptation when we have large unlabeled target-

domain dataset and assume noisy speech data of a target test

time user to be more widely available as opposed to their

clean labeled data. Under this assumption, we approach the

PSE problem with a self-supervised method in which corre-

sponding pseudo targets are generated from large amounts

of unpaired noisy speech data (Doersch et al., 2015;

Manohar et al., 2018; Watanabe et al., 2017; Zhang et al.,
2020). Our experiments show that the small student models

can be personalized in this way, resulting in improved per-

formance compared to their context-agnostic counterparts.

Moreover, given that these models are still small, perfor-

mance improvement reconstitutes the whole KD process as

a model compression method. For example, our experiments

consistently show that the PSE models can compete with

their larger generalist counterparts. We envision that the

compact student models can work as an affordable solution

in edge devices with limited computing resources.

Figure 1 provides an overview of the proposed KD-

based PSE process. On the left, as a pretraining step, the

teacher and student models are trained from a generic data-

set to cover all test time variations. However, the student

model’s constrained capacity tends to limit its SE perfor-

mance. At the center, KD-based fine-tuning learns from the

target test environment: the estimated clean speech by the

student model is compared against the result from a larger

teacher model, whose discrepancy is used to fine-tune the

student model. The zero-shot framework enables test time

adaptation.

When deploying our framework, we ultimately use only

the student model on the device for the PSE inference (the

rightmost part of Fig. 1). Even after being deployed, this stu-

dent model can continue to be refined: the device collects

more contaminated speech signals from the test scene,

which are then fed to the teacher model to produce the cor-

responding pseudo clean speech target. The pairs of newly

collected input and pseudo target signals are used to fine-

tune the student model. We could carefully organize the KD

fine-tuning process by keeping the teacher model on the

device also and performing the KD process during the devi-

ce’s idle time; it is more secure because the user data stays

in the device. However, the KD-based training process can

be burdensome unless it is scheduled carefully. It is also

possible that the teacher model and a copy of the student

model are placed externally on a cloud server, where the

actual fine-tuning operations are conducted. Then, the stu-

dent models can be frequently updated on the server side

and transferred to the user device. This cloud computing

option may be more efficient, although it may be inappropri-

ate for privacy-sensitive applications.

This paper extends our preliminary study (Kim and

Kim, 2021), in which we proposed a personalization proce-

dure for speech denoising. In addition to the previous

denoising application, we extend our application to dere-

verberation by integrating variability in room acoustics.

Reverberation introduces additional challenges as speech

intelligibility is degraded when corrupted by severe rever-

berations and even more when combined with background

noise (Han et al., 2015). During test time, we assume the

test time source location and room geometry are unknown

and the locations of speaker and acoustic environment can

change. For evaluation, we evaluate against real rooms from

various settings available in public datasets. To our best

knowledge, this end-to-end zero-shot personalization frame-

work for model compression is novel in the topic of joint

speech dereverberation and denoising. Our proposed frame-

work not only demonstrates the effectiveness of personaliza-

tion for the front-end denoising and dereverberation

application but also illustrates the potential for using teach-

er’s outputs as pseudo targets in a zero-shot scenario. In our

experiments, we show the relationship between the amount

of noisy reverberant speech samples and performances of

our personalized models and draw connections to real-life

scenarios where ample test time data may not be readily

available. Finally, we illustrate use-cases where the teach-

er’s estimates can be used to gauge test time performances

and detect catastrophic forgetting (French, 1999) that occur

from fine-tuning on specific instances (e.g., different noise

sources or room conditions) and offer a simple remedy for

this issue.

The rest of the paper is organized as follows. In Sec. II,

we describe the student-teacher framework for test time

adaptation. Experimental setups are provided in Sec. III,

including the descriptions about various individual room

acoustics. In Sec. IV, we provide extensive evaluation on

FIG. 1. (Color online) An overview of the proposed KD-based PSE process shows (left) the pretraining process for teacher and student models using generic

dataset, (center) the KD-based personalization process, and (right) the student model’s inference process after the personalization.
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the effects of personalization to various unseen environ-

ments. Concluding remarks are presented in Sec. V.

II. THE PROPOSED KD-BASED ZERO-SHOT PSE
ALGORITHM

Given a monaural signal recorded in a noisy and rever-

berant environment, we formulate the signal model as

y t½ � ¼ x t½ � þ an t½ � ¼ s t½ � � h t½ � þ an t½ �; (1)

where s, n, h, and x denote speech source, background

noise, room impulse response (RIR) function, and reverber-

ant speech, respectively. The symbol “*” stands for the con-

volution operator. The parameter, a, controls the SNR

between the reverberant speech and interfering noise source.

Our goal in this study is to recover the clean anechoic ver-

sion of the single-talker speech signal, s, from the corre-

sponding noisy reverberant observation, y.

We propose a KD-based zero-shot PSE algorithm,

which aims at joint denoising and dereverberation. Our goal

is to fine-tune a compact student model after it is deployed

such that it adapts to the unseen test speaker and environ-

ment continuously. In doing so, the teacher model’s power-

ful generalization performance plays a significant role as it

performs denoising and dereverberation simultaneously, a

behavior that the student model attempts to learn from.

A. Training teacher SE models

First, we train the teacher model, T ð�Þ, using a large-

scale dataset consisting of dry speech sources, various noise

signals, and RIR filters. Here, T ð�Þ is defined with a large

model architecture, therefore, it can properly approximate

the complex general-purpose joint speech denoising and

dereverberation function. Once trained, T ð�Þ is frozen and

not fine-tuned, assuming that its SE performance as a gener-

alist meets the quality standard in most test cases. Another

assumption is that it is too complex for the given test time

user device to perform real-time SE inference tasks.

To train the teacher models, we use generic training

datasets. The formulation of the training dataset is as fol-

lows. The clean speech utterances are taken from a large

corpus containing many speakers, s 2 G; the noise record-

ings are also from a large corpus containing various noise

types, n 2N; the RIRs are similarly from a large collection

recorded in various rooms, h 2H. We use them to synthe-

size the noisy and reverberant signals, y, as input [Eq. (1)].

Hence, the goal of the teacher model is to jointly

denoise and dereverberate y so the model can estimate the

waveforms, ŝ, that closely approximate the target clean

anechoic speech, i.e., s � ŝ  T ðyÞ. The optimization on

T ð�Þ reduces the loss between the target utterance, s, and

reconstruction, ŝ, i.e., argminHT LðsjjT ðy; HT ÞÞ, where HT
denotes the trainable parameters of the teacer model. Note

that the training process for the teacher model corresponds

to the typical supervised learning method for general-

purpose SE. Detailed model and optimization descriptions

are provided in Sec. III B.

B. Pretraining student SE models

Our student models, Sð�Þ, are pretrained in a similar way

to the teacher models, i.e., by updating its own model param-

eters, argminHSLðsjjSðy; HSÞÞ, using the same generic data-

sets, G; N, and H. However, its small capacity hinders it

from generalizing well to the unseen test conditions. Thus,

we argue that further improvement is required for these stu-

dent models to meet the quality requirement. We introduce

the KD-based test time personalization algorithm in Sec. II C,

which is designed to reduce the performance gap between

T ð�Þ and Sð�Þ. In this regard, the purpose of pretraining Sð�Þ
is to prepare the student model better than a random initializa-

tion, primed for the next fine-tuning step. Further details on

model and training are also given in Sec. III B.

C. Test time PSE

During the test time, we assume that the enhancement

system is exposed to mixture signals composed of clean

speech utterances from the test speaker, s 2 S, background

noise sources, n 2M, and RIRs, h 2 R. Note that we dif-

ferentiate these test sets from the training sets, i.e.,

G 6¼ S; N 6¼M, and H 6¼ R. Meanwhile, we also assume

that the noisy and reverberant speech signals defined by the

combination of all speech, noise, and RIRs available in the

training sets G�N�H mixed through Eq. (1) are repre-

sentative enough to encompass the test time variations, i.e.,

S�M�R � G�N�H. In practice, however, there

might be corner cases that even the large dataset G�N

�H cannot successfully represent, which the proposed

method could fail to adapt to. Hence, we postulate that if a

teacher model is large enough, it can serve as an unbiased

solution to the denoising and dereverberation problem.

Meanwhile, a small student model is also in our interest if it

is small enough for the resource-constrained edge device.

However, it may be too biased to generalize well to the test

time SE task because of its small model capacity.

Given these assumptions, we propose a personalization

framework that can adapt to a new environment without

requiring test user’s ground-truth clean speech samples or

any other auxiliary information of the speakers and acoustic

scene. As we formulate the proposed personalization

method as a fine-tuning process, we begin with a compact

student model, Sð�Þ, pretrained in a context-agnostic manner

as in Sec. II B. To fine-tune the student model, its enhance-

ment result from dereverberation and denoising, ŝS , must be

compared against the target to compute the loss and perform

backpropagation. However, because we assume that the tar-

get is not available, we use the pseudo target computed from

the teacher model.

This process falls in the category of the student-teacher

framework in which a student model is optimized using a

teacher model’s prediction (Hinton et al., 2015). In the context

of PSE, we employ a large pretrained teacher model, T ð�Þ,
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whose predicted clean utterance serves as the target to compute

the student model’s loss. Student and teacher models are ini-

tialized with pretrained generic enhancement models as dis-

cussed in Secs. II A and II B, respectively. During the test time,

the student model is optimized as argminHSLðŝT jj~Sðy; H~S ÞÞ,
where ŝT are the estimates of clean speech signals obtained

from the teacher model, and H~S are trainable parameters of

the student model. We distinguish this fine-tuned student

model, ~Sð�Þ, from the pretrained model, Sð�Þ, from now on.

The teacher’s estimate, ŝT , is only an approximation of

the ground-truth target, s, and can contain artifacts from der-

everberation and denoising (Xu et al., 2014). However,

under a zero-shot PSE setup, we assume that having these

synthesized pseudo targets is better than nothing. Hence, the

performance of the fine-tuning results depends on the qual-

ity of ŝT . To this end, we employ relatively large models

that surely outperform the student models on the test signals,

i.e., LðsjjŝT ÞLðsjjŝSÞ. Given its large capacity, the teacher

model generalizes better to unseen inputs compared to the

student model. Thus, we hypothesize that the student still

learns from these imperfect targets and adapts to the test

environment. In our experiments on simulated signals and

real-world test environments, we show that this assumed

performance gap exists, guaranteeing the performance

improvement by the KD process.

D. Interpretation from a manifold assumption

By training under the SE criterion, models learn to pro-

duce latent representations that are robust to corruptions in

input data and useful for recovering the clean speech.

Successfully learned latent representations are discrimina-

tive and can capture useful structure and variations in the

input distribution as discussed in the context of denoising

autoencoders (Vincent et al., 2010). We interpret the process

of SE using the manifold assumption: high dimensional

clean speech data lie on a low dimensional manifold

(Chapelle et al., 2006). Data samples are mapped onto a

manifold that represents a feature space that preserves the

local structure of the data. The objective of our models is to

learn the underlying manifold of the speech signals such

that they can accurately map the noisy samples to their

respective positions on the manifold of clean speech during

test time. In Fig. 2, we see generic clean speech samples, s

(the crosses), form a complex manifold (the thin solid line).

Meanwhile, under our PSE assumption that test time envi-

ronments will contain smaller subset of sources (e.g., speak-

ers, noises, and room variation), the models would only

need to learn the manifold of those subsets, which imply a

simpler manifold (the thick solid line) than the generic

speech’s. Under this interpretation, the target speaker’s cor-

rupt examples are mapped away from the manifold of clean

signals. SE models try to project the off-the-manifold exam-

ples, y, back onto the manifold. The farther away y is from

the manifold, the more corrupt the example is, and the

model takes bigger efforts to reach the manifold. Note that

the corrupted samples, y, are spoken by the same target

person and, therefore, the target manifold is the simpler

manifold (thick line) than the complex manifold (the thin

solid line) by all people.

We expect a large complex model, T ðyÞ, to better approx-

imate the manifold given its larger architecture. Hence, its pre-

diction of the personal clean speech forms an approximation

(thin dotted line) similar to the original approximation (the

thick solid line). On the contrary, smaller models are likely to

learn a poor approximation, ŝS (the thin dash). The aim of our

proposed personalization framework is to distill the better man-

ifold determined by ŝT to the smaller student models to help

better approximate the manifold. By doing so, student models

fine-tuned under our framework will be able to better define

and map points, y, closer to the test time manifold, which is

approximated by ŝ ~S (the thick dash).

III. EXPERIMENTAL SETUP

A. Datasets

Table I summarizes the datasets that were used for the

experiments. For pretraining, we employed clean speech

recordings from the LibriSpeech corpus (Panayotov et al.,
2015) and noise recordings from the MUSAN (Snyder et al.,
2015) and ESC50 datasets (Piczak, 2015). For RIRs, we

used publicly available recordings downloaded using Kaldi

scripts.1 The RIR data sources consist of the Aachen

Impulse Response Database (Jeub et al., 2009), PORI

FIG. 2. (Color online) Manifold learning perspective of SE, considering

small model sizes and the potential subsampling of the dataset to construct

personalized dataset and model.

TABLE I. Corpus and notation of speech, noise, and RIR datasets used dur-

ing pretraining and personalization.

Corpus Notation

Speech Librispeech train-clean-360 G

(Panayotov et al., 2015) test-clean Sft=va=te

Noise MUSAN (Snyder et al., 2015) N

ESC50 (Piczak, 2015) Mft=va=te

RIR AIR (Jeub et al., 2009) H

PORI (Merimaa et al., 2005)

RWCP (Nakamura et al., 2000)

BUT (Sz€oke et al., 2019) Rft=va=te

REVERB (Kinoshita et al., 2013)
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concert hall impulse responses (Merimaa et al., 2005), and

RWCP Sound Scene Database in Real Acoustical

Environments (Nakamura et al., 2000). We used

Librispeech’s train-clean-360, MUSAN’s free-
sound, and the collective RIR data for training, which we

denote as G; N, and H, respectively. A comprehensive

summary of RIR datasets, including information on RT60,

number of rooms, and microphone to loudspeaker distance,

can be found in Merimaa et al. (2005) and Sz€oke et al.
(2019). This exposes the generalist models to up to 251

speakers, 843 noise recordings, and 334 RIRs during train-

ing. The noisy mixtures are obtained by adding the noise to

speech signals at random input SNR levels uniformly cho-

sen between �5 and 10 dB.

For fine-tuning or zero-shot PSE, we used 44 speakers

from Librispeech’s test-clean and noise from the ESC-

50 dataset for environmental sound classification with 50

different noise types from 5 categories, consisting of ani-

mals, natural and water soundscape, nonspeech human

sounds, interior-domestic sounds, and exterior-urban

sounds. For RIRs, we used 5 rooms from BUT Speech@FIT

Reverb Database (BUT; Sz€oke et al., 2019) and real rooms

from the Reverb 2014 Challenge (RVB) dataset (Kinoshita

et al., 2013) for a total of 11 rooms. Each room in the BUT

dataset contains 31 microphones and 5 source positions on

average. RIRs were measured for each speaker position

using exponential sine sweep method. For RVB dataset,

there are three types of rooms (small, medium, and large)

and two types of microphone placement (near and far). RIRs

are collected from two microphone angles per room. Further

information on RIR datasets, along with speech and noise

corpuses, can be found in Table I (Sz€oke et al., 2019).

We synthesize K¼ 44 unique test time environments,

each of which consists of a test speaker, a noise source, and

a RIR configuration defined by the location of the speaker

and microphone. In particular, given a test environment

index, k 2 f1;…;Kg, we sample clean utterances from the

kth speaker, S
ðkÞ, convolve it with the kth room’s RIR, RðkÞ,

and add noises from the kth noise type, MðkÞ. For each test

environment, S
ðkÞ

are split into separate sets for fine-tuning,

validation, and testing: the partitions are approximately 5, 1,

and 1 min of clean speech, which we denote by S
ðkÞ
ft ; S

ðkÞ
va

and S
ðkÞ
te , respectively. The noise and RIR samples are pre-

pared similarly and partitioned into three separate sets. We

synthesize noisy and reverberant input signals by combining

S
ðkÞ
ft ; M

ðkÞ
ft , and R

ðkÞ
ft . Having them as input, the student

model is fine-tuned via the KD process, where the teacher

model’s denoising results are used as the pseudo target. In

other words, the student model for generic SE is first

deployed to the device and can be personalized to the user’s

specificity using 5 min of noisy and reverberant recordings

of the test environment. Then, S
ðkÞ
va ; MðkÞ

va , and RðkÞva are used

to validate the student model during fine-tuning, mainly to

prevent overfitting. Note that this does not mean that the

PSE algorithm needs clean speech for validation: the valida-

tion process still relies on the teacher’s estimate of clean

speech as the target to compute the validation loss. Hence,

early stopping is still conducted in a zero-shot manner. We

report our PSE models’ final performance using the test sets

S
ðkÞ
te ; M

ðkÞ
te , and R

ðkÞ
te , for which we do compute the final

enhancement performance by comparing to the ground-truth

clean speech signals, S
ðkÞ
te .

When we simulate various test conditions, the noise and

speech sources are mixed under four different input SNR

levels (i.e., �5 dB, 0 dB, 5 dB, and 10 dB). All speech and

noise audio files are loaded at 16 kHz sampling rate and

standardized to have unit-variance.

B. Models

Our student models are based on the unidirectional

gated recurrent unit (GRU) architecture (Cho et al., 2014).

Recurrent neural networks with gating technology, such as

the long short-term memory (LSTM) cell (Hochreiter and

Schmidhuber, 1997) and GRUs, have been predominantly

used in SE due to their ability to overcome the gradient van-

ishing or explosion issues during backpropagation through

time (BPTT). As for GRUs, although it was first introduced

as a computationally efficient alternative of LSTM for

machine translation, it was quickly adopted for SE tasks as a

result of their flexibility in handling continuous input

sequences (e.g., audio spectra) and learning continuous

latent variables (Chazan et al., 2017; Luo et al., 2020;

Sivaraman and Kim, 2020). In the SE literature, LSTM and

GRU can be combined with Convolutional Neural Network

(CNN) layers for better performance (Hu et al., 2020), but

the hybrid architecture adds more burden to the hardware

design. In this paper, we focus on the simple GRU-only

architecture, which is more suitable for CPU operations, and

show the PSE method’s merits. However, the proposed prin-

ciples should apply to other architectural choices.

We use frequency-domain representations obtained

through the short-time Fourier transform (STFT) as inputs

to the enhancement models. STFT is with a Hann windowed

frame of 1024 samples and a hop size of 256 samples. The

recurrent unit reads each STFT magnitude spectrum sequen-

tially and updates the hidden state at each frame. For our

denoising application, we apply a dense layer to map the

hidden unit outputs from the GRU layer into complex ideal

ratio masks (Williamson et al., 2016). The denoising mask

is applied element-wise to the mixture complex spectro-

gram, and then transformed back to the time-domain signal,

ŝ, through inverse STFT. We use negative scale-invariant

signal-to-noise ratio (SI-SNR) as the loss function (Le Roux

et al., 2019). While the GRU architecture for the student

models is fixed with two hidden layers, we vary their hidden

units from 32 to 1024 to verify the impact of personalization

on the different architectural choices.

Meanwhile, as for the teacher model, we employ two

different network architectures. First, we use a 3� 1024

GRU architecture, which is large enough to outperform the

students. In addition, we also employ dual-path Recurrent

Neural Networks (RNN) (DPRNN; Luo et al., 2020) as an

alternative teacher model. DPRNN was chosen because of
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its higher performance and smaller model size compared to

other time-domain models such as Conv-TasNet (Luo and

Mesgarani, 2019). More advanced transformer based mod-

els, such as dual-path transformer (DPTNet; Chen et al.,
2020), report higher performance with comparative size to

DPRNN in speech separation tasks, but we found, empiri-

cally, that the DPRNN performs better for our dereverbera-

tion and denoising task.

Indeed, the DPRNN teacher outperforms the GRU

teacher because of its structural advantage. Hence, we con-

trast the impact of the two teacher models on the PSE per-

formance after the KD-based fine-tuning process. The

DPRNN model is configured using implementation avail-

able in Asteroid’s source separation toolkit (Pariente et al.,
2020). Same architecture as was reported in Luo et al.
(2020) is adopted (i.e., six repeats), and we trained it with

our single-speaker SE setup rather than the original speech

separation task. The model architectures, their respective

number of parameters, and the multiplier-accumulator

(MAC) operation counts are shown in Table II. Note that

DPRNN is not the largest model, but it requires extensive

MAC operations.

Here, we introduce new notations to distinguish between

the two teacher model architectures: T GRU and T DPRNN. In

addition, we also denote the fine-tuned student models differ-

ently from the pretrained initial model, S, and add the subscript

to indicate what it learns from: ~SGRU and ~SDPRNN, respec-

tively. We include a student model fine-tuned on the ground-

truth oracle clean speech targets as a performance upper bound

and denote it as ~SGT. Summary of notations for pretrained and

fine-tuned models are listed in Table III. Note that the systems

denoted with tilde, ~SGRU; ~SDPRNN, and ~SGT, represent person-

alized student models, whereas the generalist models,

S; T GRU, and T DPRNN, are discussed to report the perfor-

mance of either the teacher models or the baseline.

The Adam optimizer (Kingma and Ba, 2015) was used

with learning rate of 1� 10�4 for pretraining and 1� 10�5

for fine-tuning.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Objective performance analyses

The box plots in Fig. 3 show the enhancement performan-

ces of various models under K¼ 44 environments synthesized

with different noise level conditions. The results are shown for

pretrained and fine-tuned student models as well as for teacher

models as reference. Figures 3(a)–3(d) show comprehensive

denoising and dereverberation results across cases with severe

(�5dB) to moderate (þ10dB) test time SNR levels. We notice

that the overall performance decreases due to the additive

background noise. While their final input SNR values are con-

trolled by varying the loudness of the test noise sources, M
ðkÞ
te ,

the speech sources are also degraded by the reverberation

defined by the test time RIR set, R
ðkÞ
te . In Figs. 3(a)–3(d), we

observed that our proposed personalization framework

improves dereverberation and denoising performances of pre-

trained student models under all noise and room conditions,

i.e., ~SGRU and ~SDPRNN results are always better than the S
results, on average, if their model complexity is the same.

From these results, we can infer that personalization helps sig-

nificantly improve the joint dereverberation and denoising per-

formances for all student architectures.

In addition, we observe that the personalized models

learned from the DPRNN teacher, ~SDPRNN, always outper-

form their corresponding models fine-tuned using the GRU

teacher, ~SGRU. ~SGRU, at times, perform similarly to ~T GRU

especially in the case of the 2� 1024 and 3� 1024 student

and teacher models. This is because both models trained

under the same complex Ideal Ratio Mask (cIRM) estima-

tion objective, sharing similar GRU architecture, as opposed

to the more advanced DPRNN’s architecture and its end-to-

end SE objective. The results signify the importance of the

teacher model’s performance. As each fine-tuned student

models stem from the same pretrained GRU model, this

shows that the fine-tuned performance depends on the qual-

ity of the teacher model. It is also noticeable that the struc-

tural discrepancy between the student and teacher, i.e.,
~SGRU (a GRU) and T DPRNN (a DPRNN), is not an issue. It

implies that the proposed framework can potentially employ

various advanced teacher models as the deep learning

research improves the state of the art in the future.

We also observe that ~SDPRNN can catch up to the perfor-

mance of ~SGT, which is only marginally better. This sug-

gests that fine-tuning on imperfect pseudo targets generated

by ~T DPRNN has almost the same benefits as when ground-

truth targets are used. Given the student models’ small

architecture and limited generalization capacity, our person-

alization procedure can fine-tune the student model to its

optimal performance but by relying only on the teacher’s SE

results.

TABLE II. Complexity of student and teacher models in MACs and number

of parameters. MACs are computed given 1-s inputs.

Models MACs (G) Parameter (M)

Student GRU (2� 32) 0.006 0.09

GRU (2� 64) 0.013 0.20

GRU (2� 128) 0.030 0.48

GRU (2� 256) 0.079 1.25

GRU (2� 512) 0.232 3.68

GRU (2� 1024) 0.762 12.08

Teacher GRU (3� 1024) 1.159 18.37

DPRNN (Luo et al., 2020) 15.238 3.63

TABLE III. Notations for pretrained and fine-tuned models.

Notation Description

T GRU The frozen GRU teacher trained from generic datasets

T DPRNN The frozen DPRNN teacher trained from generic datasets

S Initial student pretrained from generic datasets
~SGRU Student, fine-tuned on T GRU’s test output
~SDPRNN Student, fine-tuned on T DPRNN’s test output
~SGT Student, fine-tuned on the test time ground-truth targets
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After personalization, the small student models consis-

tently show significant improvements on their pretraining-

based initialization. Hence, it verifies that our personalization

framework is a model compression method if we compare

the improved PSE models to those pretrained generalist

models. Indeed, a smaller personalized model can compete

with a large generalist, e.g., 2� 32 ~SDPRNN vs 2� 1024S
for �5 dB input SNR as in Fig. 3(a). According to Table II,

a personalized 2� 32 specialist saves 11.99 M parameters

and 756 M MACs compared to a 2� 1024 generalist (for 1-s

inputs), which is more than 99% reduction in terms of spa-

tial and arithmetic complexity. Therefore, even if further

compression methods, e.g., eight-bit quantization, are

always available to the 2� 1024S model, it will still most

likely be more complex than 2� 32 ~SDPRNN. Furthermore,

applying compression on larger models will subsequently

lower their performance depending on the type and amount

of compression. On the contrary, the 2� 32 ~SDPRNN outper-

forms the 2� 1024S even after its 99% reduction of com-

plexity. This demonstrates that our framework works as a

mode of lossless model compression. Thus, we argue that it

is more advantageous to personalize the models instead of

increasing generalists’ computational capacity for better

generalization capabilities. In addition, as PSE shows

improved performances in denoising and dereverberation

tasks in various unique test environments, our personaliza-

tion framework can be seen as a genuine adaptive system
that specializes not only in each individual user but in the

specific noise source and reverberant condition of the test

time environment.

Figure 4 show the SE performance of various models on

the reverberation-only input signals, i.e., with no additive back-

ground noise. It gives a separate view to the proposed PSE

method’s dereverberation performance from the joint denois-

ing and dereverberation setup. In addition, the dereverberation

results are shown separately as two cases in which one-half of

the environments (K¼ 22) are with low input scale-invariant

SDR (SI-SDR) [Fig. 4(a)] and the other with high input SI-

SDR [Fig. 4(b)]. For the lower SI-SDR cases, the results in

Fig. 4(a) show that our framework can successfully personalize

to different room acoustics. Contrary to joint dereverberation

and denoising results, the improvements for ~SDPRNN are mini-

mal compared to those for ~SGRU. This trend is not observed in

Fig. 4(b), which reports results from upper SI-SDR cases. First,

the generalist models, S, worsen the sound quality. As the SI-

SDR of the reverberant inputs were already high, the pretrained

generalists must have injected artifacts that significantly

decrease the quality of the signal. This is also evident in the
~SGT baselines, where the model is fine-tuned on ground-truth

anechoic targets. Hence, the goal of personalization in these

cases is to be able to mitigate this performance degradation of

the processed signals. Indeed, ~SDPRNN show improved per-

formances over the initial worsened estimates by the pretrained

models, demonstrating the KD framework’s consistent capac-

ity to produce pseudo-labels for fine-tuning student models.

B. Subjective performance analyses on real-world test
environments

Additionally, we conducted a subjective listening test

with ten participants using real-world noisy reverberant

FIG. 3. (Color online) Comparison of joint dereverberation and denoising performances from pretrained generalists against personalized specialists under

various input SNR levels. (a)–(d) demonstrate results from input SNR levels �5, 0, þ5, and þ10 dB, respectively. Student models are initialized as two-

layered GRU generalists. Teacher models are provided as references.
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recordings from the voiceHome-2 dataset (Bertin et al.,
2019). We trained ten personalized models from ten test speak-

ers, whose noisy and reverberant samples were recorded in dif-

ferent rooms from different houses with varying speaker

position and background noise types according to the setup of

the voiceHome-2 dataset. Because the dataset was recorded in

the real-world test environment, there is no clean utterance

available for supervised learning, making our experiment real-

istic. The test was performed by asking ten listeners for their

perceptual evaluation of the test sequences. Figure 5 presents

their mean opinion scores (MOS). Each trial consists of an

input noisy and reverberant sample, y, the enhancement result

for a small student model, S, the output for the fine-tuned stu-

dent model, ~SDPRNN, and the result for the DPRNN teacher

model, T DPRNN. The student models are with 64 hidden units.

From Fig. 5, we can observe that the personalized student

models ~SDPRNN outperforms the baseline student models
~SDPRNN. The statistically significant improvement aligns with

the objective metrics. Whereas this dataset contains only

indoor recordings, this provides additional analysis not only

regarding the significance of the metrics but also the effective-

ness of the PSE framework.

C. Evaluation of personalization using varying
amounts of fine-tuning datasets

Our proposed personalization showed great improve-

ments under 5 min of fine-tuning data, which is noisy and

reverberant speech recorded from the same acoustic scene

during test time. However, we cannot assume this amount of

data to be readily available for realistic scenarios. Hence,

we test our framework on varying amounts of noisy rever-

berant mixtures as well, i.e., 10 s and 1 min. Figure 6 shows

the average SI-SDR improvements by using varying lengths

of noisy input data across all K environments. We only use

the DPRNN teacher’s estimates for fine-tuning as we have

observed its effectiveness from Sec. IV A. For brevity, we

test on 0 and 10 dB input SNR cases.

As expected, the length of available datasets for fine-

tuning is proportional to the test time performance of the

personalized student models. This experiment illustrates a

realistic use-case where, initially, 5 min of noisy data will

not be directly available but rather 10 s and, later, 1 min of

test time signals will be gradually collected over time in a

realistic data collection scenario. From both figures in

Fig. 6, we can observe that smaller personalized models can

still outperform a larger generalist even with less fine-tuning

data. For example, in Fig. 6(a), 2� 256 ~SDPRNN personalized

on only 10 s of data can outperform the largest generalist.

D. PSE models’ generalization performance
on unseen speakers, noises, and room RIRs

Personalization could potentially worsen the generaliza-

tion performance if a model fine-tuned on a specific test

environment must generalize to other unseen test environ-

ments comprised of unseen speakers, noise types, or room

conditions. The performance degradation is mainly due to

the catastrophic forgetting phenomenon (French, 1999):

fine-tuning on the target test time environment changes the

weights that were initially pretrained on the general-purpose

training set. This can be problematic if the model is relo-

cated or the surrounding is changed (e.g., furniture rear-

rangement or new additions to room, such as draping, that

could alter the acoustics).

We examine this behavior by challenging an already

personalized student with a different unseen environment.

For this experiment, we design K¼ 8 different environments

with balanced speaker gender, noise class, and various room

dimensions. Details of the configurations can be found in

FIG. 4. (Color online) Dereverberation performances of pretrained generalist and personalized specialists on reverberant inputs without additional back-

ground noise (i.e., dereverberation-only experiments). The results are two separate cases, where SI-SDR of input reverberant signals are low for half of the

environments (K¼ 22) as shown in (a) and high for the other half as shown in (b).

FIG. 5. (Color online) Aggregated mean opinion scores (MOS) from the lis-

tening tests. Notches represent the 95% confidence intervals.

J. Acoust. Soc. Am. 155 (2), February 2024 Kim et al. 1361

https://doi.org/10.1121/10.0024621

 04 M
arch 2024 15:52:06

https://doi.org/10.1121/10.0024621


Table IV. Further details on dimensions of the rooms can be

found in Table VI in the Appendix. The student models are

personalized to each kth room, using noisy reverberant sig-

nals generated from S
ðkÞ
ft ; M

ðkÞ
ft , and R

ðkÞ
ft for K different

personalized student models in total. The fine-tuned models

are then evaluated on each jth room using set-aside unseen

datasets S
ðjÞ
te ; M

ðjÞ
te , and R

ðjÞ
te taken from the same K¼ 8 con-

figurations, i.e., j 2 f1;…;Kg. Thus, k¼ j is the desired per-

sonalization setup, while j 6¼ k represents the kth PSE model

challenged to work on the jth environment. 2� 64 RNN stu-

dent and DPRNN teacher was used to produce Fig. 7.

Additive background noise was scaled to 0 dB input SNR.

In Fig. 7, we show the relative differences between the

pretrained generalist and personalized student models evalu-

ated on all K¼ 8 environments. We report the result using

SI-SDR, short-time objective intelligibility (STOI; Taal

et al., 2011),2 and perceptual evaluation of speech quality

(PESQ; Rix et al., 2001)3 scores for an in-depth evaluation

on personalization and its following effects on other envi-

ronments. We apply various metrics, SI-SDR, STOI, and

PESQ, to provide a comprehensive measure of the noisy and

reverberant conditions. It is not straightforward to find a

metric for enhancement methods that necessarily leads to

improvements for different downstream applications

because different metrics capture different distortion mea-

sures. Considering automatic speech recognition (ASR) as

an example, word error rate (WER) and STOI have shown a

higher correlation coefficient than other objective evaluation

metrics; however, under realistic conditions, there are vari-

ous factors that affect the ASR performance, and there is no

single metric that has been shown to necessarily lead to bet-

ter WER (Chai et al., 2018; Fukumori et al., 2013).

The negative values in the cells indicate performance

degradation incurred from personalization. Each jth cell in

the kth row corresponds to the performances of the model

personalized on kth environment and evaluated on the jth
environment. For example, the first row corresponds to the

performances of the student model fine-tuned in environ-

ment “A” evaluated on all K configurations.

Unsurprisingly, the diagonal axes generally show

highest improvements because those cells represent evalu-

ation results of student models personalized on the same

environment. This supports the main argument of our pro-

posed framework. On the other hand, there are underper-

forming cases, such as models fine-tuned on “E,”

performing poorly on A (–1.1 dB DSI-SDR) and “F”

(–0.9 dB DSI-SDR). Interestingly, the inverse relationship

does not always hold. Although the model personalized on

“B” generalize well to A (1.0 dB DSI-SDR), the model fine-

tuned on A does not for B (–0.2 dB DSI-SDR). These

results show that personalizing on one condition can incur

negative effects when the model has to generalize to

another environment.

Although this reveals a weakness of the proposed

framework, this problem can be addressed with a simple

solution by resetting or readjusting the model when sudden

worsened performance is detected. However, it is not

straightforward to detect such a performance drop during

the test time. As a remedy, we propose to compare the PSE

result to the teacher model’s estimate as an indirect way to

evaluate the speech quality. It is because there are no

ground-truth test time data available. In Fig. 8, we show the

results from a same experimental setup with Fig. 7 but with

the scores computed from using the teacher’s estimates as

the reference, i.e., the pseudo targets. We see that the SI-

SDR, STOI, and PESQ scores measured against teacher’s

estimates (Fig. 8) are different from those measured against

the ground-truth targets (Fig. 7). However, the scores mea-

sured using teacher’s outputs are still close approximates to

the ground-truth metrics. This showcases another merit of

using the teacher’s estimates. We can reliably use these

pseudo metrics to estimate a model’s test time performance

and decide to reset back to the pretrained generalist version

or initiate a fine-tuning process to adjust the model to the

new test environment.

Figures 7(b) and 7(c) also show that the relative dif-

ferences in SI-SDR, STOI, and PESQ are not always cor-

related to one another. Cells with high relative SI-SDR

improvements do not necessarily show improvements in

intelligibility (e.g., model personalized on B evaluated on

A). This could be a result of the loss function defined

by D SI-SDR to optimize the student models during the

fine-tuning process. A better optimization objective could

be explored to prevent such differences. Nonetheless, per-

sonalization on intended environments generally shows

large improvements without significant performance

degradation.

FIG. 6. (Color online) Relative improvements in SI-SDR from different

dataset sizes for fine-tuning on various input SNR levels under severe 0 dB

SNR level (a) and moderate 10 dB SNR level (b). Student models are two-

layered GRU with varying number of hidden units fine-tuned on DPRNN

teacher models (~SDPRNN).

TABLE IV. Descriptions of different unseen environments.

Configuration Speaker Noise Room RIR

Indentification (ID) ID (gender)

A 260 (M) Crying baby Q301 BUT

B 1221 (F) Rooster E112 BUT

C 1995 (M) Crackling fire CR2 BUT

D 3575 (F) Car horn R112 BUT

E 908 (M) Sea waves Small-far RVB

F 1320 (F) Clapping Medium-near RVB

G 2830 (M) Crickets Medium-far RVB

H 4992 (F) Train Large-far RVB
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E. Generalization performance to unseen locations
within the same room

Next, we evaluate on a scenario in which a student

model is personalized on a single location of a room and

tested on unseen positions within the same room. Thus far,

our experiments used all RIRs, R
ðkÞ
ft , from the kth room to

construct the test time fine-tuning dataset. It was to make

the PSE model robust to the variations of RIR filters, which

vary vastly depending on the microphone-speaker distance,

vicinity to walls or corners, occluding objects, and other fac-

tors (Shinn-Cunningham et al., 2005). In this subsection, we

fine-tune a student model using noisy reverberant data gen-

erated using a RIR signal from a specified location, i, within

the same kth room, R
ðkÞ
i . As with other experiments, utteran-

ces from a single user, S
ðkÞ
ft , and one noise type, M

ðkÞ
ft , are

used for fine-tuning. For evaluation, we select RIRs from

unseen speaker locations within the same room, R
ðkÞ
j , where

j 6¼ i. Unseen speech samples from S
ðkÞ
te and noise sources,

M
ðkÞ
te , are used to generate the noisy reverberant evaluation

set. For brevity, we experiment on 2� 64 student models

and 0 dB input SNR for additive background noise.

Two rooms from the BUT were selected for this experi-

ment: a small office (L212) and a large conference room

(D105). Their speaker locations and distances from the micro-

phone are described in Table V. Geometric information of all

the other rooms can be found in Table VI in the Appendix.

Figure 9(a) shows several speaker positions from room

L212 used in this experiment. We fine-tune on noisy rever-

berant speech from an arbitrary position A and evaluate on

other locations of the room. We experiment using the same

room but on multiple different speakers and noises

described in Table IV. Figure 9(b) shows the average gener-

alization results. Despite the changes in location of the test

time speech source, fine-tuning on one location of a room

can improve dereverberation and denoising results for

unseen locations within the same room at least to some

degree. The same behavior can be observed in Fig. 10 for a

much larger room, D105, although the generalization power

drops drastically when the unseen location is too different

from that used for fine-tuning, e.g., as in F. This demon-

strates that a stationary personalized device is capable of

performing robust SE on a nonstationary user within the

same room as opposed to suffering from drastic changes in

entire room geometry (Sec. IV D).

FIG. 7. (Color online) Joint denoising and dereverberation results of 2� 64 ~SDPRNN on different environments with 0 dB input SNR. Each of the K¼ 8 dif-

ferent environments are marked from “A” to “H.” Each cell corresponds to the performances of the model personalized on one environment and evaluated

on each environment. The objective scores, DSI-SDR (a), DSTOI (b), and DPESQ (c) are measured using ground-truth anechoic targets as the reference.

FIG. 8. (Color online) Joint denoising and dereverberation results of 2� 64 ~SDPRNN on different environments with 0 dB input SNR. Each of the K¼ 8 dif-

ferent environments are marked from A to H. Each cell corresponds to the performances of the model personalized on one environment and evaluated on

each environment. In this setup, the objective scores DSI-SDR (a), DSTOI (b), and DPESQ (c) scores are measured using the teacher model’s outputs as the

reference.
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V. CONCLUSION

In this paper, we proposed a zero-shot KD approach to

personalizing SE models for joint dereverberation and denois-

ing. Our goal was to adapt a small model to dynamically

changing test time SE environment instead of employing a

large generalist model, which can be too heavy for embedded

systems. In doing so, we exploited widely available noisy

mixtures during test time rather than leveraging ground-truth

targets or any extra information of the acoustic environment,

which are rarely available in the real-world use-cases. To

improve the usability of the corrupt examples found in the test

scene, our framework synthesizes pseudo targets by executing

a superior-quality SE routine on an overly complex teacher

model. We suggest that this KD-based personalization can be

performed on a regular basis or when a significant change is

detected in the test time acoustic scene. As this fine-tuning

task can be performed either in the cloud or when the device

is idle, we envision that it is not burdensome for the device.

Evaluation results demonstrate that the student model’s

performance greatly improves on specific test time speakers

and acoustic environments. The improvements were consis-

tent under various noise and room conditions. Furthermore,

the improvements can be observed regardless of model size

or the amount of fine-tuning data available: the fine-tuned

performance is dependent on the amount of data, but this

does not pose a serious limitation on our framework as we

can observe improvements even with minimal data. It is also

noticeable that the architectural difference between the stu-

dent and teacher models does not impact the personalization

process. Therefore, we expect that our proposed framework

can benefit from advancements in the future deep learning-

based SE research. Because our small personalized student

model can give superior performances to large generalist

models, we claim that the KD-based fine-tuning method pro-

vides another mode of model compression that does not sac-

rifice performance, i.e., lossless model compression.

Although fine-tuning on specific environments can harm

the generalization on other unseen scenes, the teacher’s esti-

mates can again be used to gauge the change of environments.

A decision can be made to reset the student’s parameter back

to its pretrained value, followed by another personalization

procedure for further adaptation. Also, our study shows that

models personalized on one location can still show improved

generalization on unseen locations within the same room, dem-

onstrating robustness to nonstationary sources.

Major limitations of our current study for PSE comes

from the dependency on the quality of the teacher model

and especially the amount of fine-tuning data available.

Another weakness is our experiments tested on test time

environments contain only a single speaker and one unique

noise source per room. Future research shall consider

expanding this study to minimize the number of utterances

required for the KD procedure and perform SE and separa-

tion under multi-speaker conditions.
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FIG. 9. (Color online) Denoising and dereverberation evaluation results

from fine-tuning in room L212 from location A and generalizing to unseen

locations. Locations of the microphone along with various positions within

the room are shown in(a). The generalization results of the model on noisy

reverberation speech from all positions in the room are provided in (b).

TABLE V. Locations and source-mic distance of the rooms.

Room

ID

Location

ID

Location

(m�m�m)

Source-microphone

distance (m)

L212 A 0.41� 1.13� 1.98 4.87

B 6.96� 0.77� 1.98 2.11

C 5.34� 2.48� 1.39 0.90

D 4.72� 1.32� 1.88 0.87

E 3.21� 1.67� 0.46 2.12

D105 A 11.93� 22.93� 3.63 13.76

B 5.23� 9.90� 1.82 4.18

C 14.79� 20.79� 4.47 14.76

D 6.01� 6.06� 1.97 7.85

E 9.65� 6.22� 3.12 10.01

F 0.70� 5.48� 2.02 7.86

FIG. 10. (Color online) Denoising and dereverberation evaluation results

from fine-tuning in room D105 from location A and generalizing to unseen

locations. Locations of the microphone along with various positions within

the room are shown in (a). The generalization results of the model on noisy

reverberation speech from all positions in the room are provided in (b).
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