
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. Y, ZZZ 2022 1

Efficient Personalized Speech Enhancement
through Self-Supervised Learning

Aswin Sivaraman, Student Member, IEEE, Minje Kim, Senior Member, IEEE

Abstract—This work presents self-supervised learning methods
for developing monaural speaker-specific (i.e., personalized)
speech enhancement models. While generalist models must
broadly address many speakers, specialist models can adapt
their enhancement function towards a particular speaker’s voice,
expecting to solve a narrower problem. Hence, specialists are
capable of achieving more optimal performance in addition to
reducing computational complexity. However, naive personaliza-
tion methods can require clean speech from the target user,
which is inconvenient to acquire, e.g., due to subpar recording
conditions. To this end, we pose personalization as either a zero-
shot task, in which no additional clean speech of the target
speaker is used for training, or a few-shot learning task, in
which the goal is to minimize the duration of the clean speech
used for transfer learning. With this paper, we propose self-
supervised learning methods as a solution to both zero- and few-
shot personalization tasks. The proposed methods are designed to
learn the personalized speech features from unlabeled data (i.e.,
in-the-wild noisy recordings from the target user) without knowing
the corresponding clean sources. Our experiments investigate three
different self-supervised learning mechanisms. We set up a pseudo
speech enhancement problem as a pretext task, which pretrains
the models to estimate noisy speech as if it were the clean target.
Contrastive learning and data purification methods regularize the
loss function of the pseudo enhancement problem, overcoming
the limitations of learning from unlabeled data. We assess our
methods by personalizing the well-known ConvTasNet architecture
to twenty different target speakers. The results show that self-
supervised models achieve zero-shot and few-shot personalization
using fewer model parameters and less clean data from the target
user, achieving the data efficiency and model compression goals.

Index Terms—Personalized speech enhancement, self-supervised
learning, data efficiency, model complexity

I. INTRODUCTION

W ITH the ubiquity of voice-controlled intelligent devices,
there is now an ever-growing demand for low-cost

robust speech processing systems. These systems are reliant
on speech enhancement (SE) technology, which improves
the quality and intelligibility of noisy speech signals [1].
Over the last decade, deep learning algorithms have quickly
defined the state-of-the-art in SE research [2]–[10]. Most neural
networks proposed for SE are trained using supervised learning
frameworks [11]. Typically, input-output pairs are program-
matically generated by mixing various speech recordings with
assorted noise recordings. Supervised data preparation requires
labeled datasets, i.e., the speech signals are known to be clean
or of reference quality. The neural networks then learn a
mapping function between the input mixture signals and their
originating ground-truth clean speech signal. Consequently,
the learning outcomes of supervised SE models are highly
dependent on the diversity of the training data and increased

· · ·

· · ·

Generalist (Universal) 
Speech Enhancement System

User A +
Dog Barking

User A’s
Clean Speech

User B +
Drone Sounds

User B’s
Clean Speech

(a)

Specialist A

User A +
Dog Barking

User A’s
Clean Speech

Specialist B

User B +
Drone Sounds

User B’s
Clean Speech

(b)

Fig. 1. A conceptual overview of how specialist models can replace generalist
models for speech enhancement. Model inputs and outputs are shown in
purple and green arrows, respectively. For example, Specialist A can train
using User A’s unique noisy speech recordings, producing a speaker-specific
cleaned output. Optimizing for a specific speaker or environment can yield
improved performance. Additionally, because specialists address a subset of the
generalist’s task, they can theoretically afford a reduction in model parameters.

model complexity. But because large publicly available datasets
do not represent all populations, machine learning models
can easily become biased towards over-represented social
groups [12]. For instance, a general-purpose universal SE
model may under-perform for a particular target speaker if
their unique vocal characteristics or noisy environment are
never encountered during training. And although modern GPU
technology enables training neural networks with millions
of learnable parameters [13], bigger models are infeasible
to deploy on low-resource devices [14]. To overcome these
disadvantages of generalist models, we focus our investigation
on developing speaker-specific specialist models. Through
model specialization, we narrow down the scope of the SE
task, unlocking the potential for improved enhancement of
a single target speaker while affording a reduction in model
complexity. We refer to this narrowed problem definition as
the personalized speech enhancement (PSE) task. Figure 1
illustrates this idea of replacing large generalist models with
smaller more-optimized specialist models.

While specialists are theoretically preferable to generalists, in
practice, personalization is a challenging optimization strategy
because it requires explicit knowledge about the target speaker
and their environment. Realistically, users of voice-controlled
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devices would be reluctant to share their clean voice data due
to privacy concerns. Given that speech synthesis models can
be conditioned on speaker identity using only five seconds
of clean speech data [15], unwanted forgery of one’s voice
is a genuine issue. Even if users are willing to provide their
clean speech, it can still be difficult to collect a large quantity
of studio-quality noise-free recordings. Users might not have
access to a quiet anechoic room, and their microphones may
introduce unwanted artifacts.

This study addresses the voice-controlled device PSE task
considering the aforementioned user data constraints. We
envision two possible scenarios. In one, the smart device
must personalize using only the target speaker’s in-the-wild
noisy speech data. We view this as a zero-shot (ZSL) machine
learning problem as there is no labeled data. In the second
scenario, the target user provides the device with a limited
amount of clean speech, on the order of seconds. If these
signals are of good quality, we consider personalization to be
a few-shot (FSL) problem, given that some labeled speech is
now available. Even if there is abundant unlabeled data, the
supervised training framework cannot be applied because the
data is not guaranteed to be reference-quality.

In this paper, we assess two self-supervised learning (SSL)
frameworks for developing PSE models. Through SSL, we train
the PSE model to solve a “pretext task” using the unlabeled
data. The effectiveness of the model’s learned features in
SSL depends on how mismatched the pretext task is from
the intended downstream task. This paradigm has gained
popularity in many research areas such as computer vision [16],
natural language processing [17], and reinforcement learning
[18]. One particular SSL technique, known as contrastive
learning, augments the unlabelled data in a pairwise manner.
Training a model to keep similar samples together becomes
an easy method for developing discriminative feature spaces.
As suggested in the recent SimCLR paper, the composition of
the pairwise data augmentation pipeline strongly influences the
robustness of the learned contrastive features [19]. Principally,
self-supervision differs from traditional supervised learning by
removing the necessity for labeled data. Instead, through SSL,
the goal is to learn representative features that are useful for
the downstream task. Consequently, our goal in this paper is
to devise data augmentation techniques and contrastive loss
functions that can help extract meaningful features from the
unlabeled data—which in our case correspond to noisy speech.

In place of the unavailable clean speech references, both SSL
procedures repurpose the target speaker’s noisy speech as the
new training target. The first method we investigate is pseudo
speech enhancement (PseudoSE), referred to in other literature
as noisy target training. We mix further noise onto the already-
noisy observations and train the PSE model to remove the
newly injected noise. This self-supervised task is mismatched
from true speech enhancement since the input signals are
doubly degraded. Therefore, the upper bound of PseudoSE
is determined by how noisy the in-the-wild data originally is.
Nevertheless, specialist models trained using PseudoSE have
an advantage over generalists because their training data is in-
domain, i.e., the noisy speech signals are still speaker-specific
as opposed to speaker-agnostic.

The second method we investigate is contrastive mixtures
(CM). Here, we reorganize the doubly-degraded input signals
into pairs. We prepare positive pairs—which share the same
noisy speech source but have different injection noises. Con-
versely, the negative pairs have identical injection noises but
differing noisy speech sources. Once the paired inputs are
pseudo-denoised, the PSE model must learn to maximize the
similarity of positive pair outputs and minimize the similarity
of negative pair outputs. CM improves upon PseudoSE thanks
to the contrastive learning terms. Negative pairs, in particular,
provide an additional learning opportunity. Note that speech
enhancement can be seen as a subset of source separation,
wherein the two sources are known to be speech and noise.
Any additional utilization of the source separation nature of
the problem will be a plus. Hence, with CM, when preparing
negative pairs, we see the noise source as the shared primary
source while the speech sources are considered interfering
sources that disagree. Another view is that the negative pairs’
disagreement objective acts as a regularization of PseudoSE.

Additionally, we show that both SSL frameworks can benefit
from a data purification (DP) process. As its name suggests,
DP makes the unlabeled noisy speech signals more useful by
identifying the parts that contain purer speech than others. In
that regard, DP can be seen as an “active learning” method [20]
where the goal is to focus on more important samples from
a large unlabeled dataset. Regarding speech enhancement, we
utilize DP by training a neural network in advance to predict
speech quality frame-by-frame. Prior research has shown the
feasibility of predicting the long-term signal-to-noise ratio
(SNR) of a noisy speech signal [21]. Our quality predictor,
which estimates segmental SNR, identifies the relatively cleaner
segments within all the noisy unlabelled data, a process
similar to auto-labeling. We convert the quality predictor’s
estimates into weights which guide the personalized speech
enhancement model’s loss function to prioritize cleaner input
frames [22]. Then, the PseudoSE function becomes refined
through data purification: the frames of audio that are doubly
degraded become diminished through weighting. Consequently,
the PseudoSE function will resemble an ideal speaker-specific
fully-supervised learning process where only a single noise
injection remains.

In summary, this research study explores personalized speech
enhancement (PSE) as either a zero-shot (ZSL) or few-shot
(FSL) learning problem. We investigate two self-supervised
(SSL) methods for training PSE models, and we augment both
methods using data purification (DP). Through our experiments,
we assess the efficiency of the training methods in terms of
data and model complexity. Notably, in the FSL context, data
efficiency is achieved by developing models which utilize
as little user-provided clean speech as possible. To this end,
our experiment results show that models pretrained using the
proposed self-supervised methods see greater improvements
using a smaller amount of clean speech as opposed to fully-
supervised generalist pretrained models. Our experiments also
assess PSE models of four different sizes, reinforcing the idea
that in-domain self-supervised training allows smaller models to
achieve a more competitive speech enhancement performance.
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II. RELATED WORKS

We treat PSE as a data-driven problem, where training using
in-domain data implicitly informs the model about the target
speaker and their environment. This differs from other studies,
which tackle model personalization using auxiliary metadata,
e.g., speaker-identifying embedding vectors [23]–[25].

As mentioned in Sec. I, we posit that PSE models benefit
over SE models for optimized performance but also for lossless
model compression. Prior research has empirically shown that
model specialization does lead to performance gains [26], [27].
Intuitively, focusing on a small subset of the initially complex
problem simplifies the neural network learning objective.
Therefore, with voice-controlled devices, we envision that a
truly personalized speech enhancement model can optimally
improve the experience of its primary user, forgoing other
speakers and other unlikely acoustic scenarios.

Although model compression is an active area in deep learn-
ing research, many standardized methods, such as quantization
or pruning [28], do not consider the context of the model after
deployment. Decreasing the total number of model parameters
without reformulating the model objective is an option, but
this may result in discernible performance trade-offs [29].
Particularly with regards to speech enhancement or speech
separation, more recent research has focused on novel model
compression methods, including bitwise operations [30]–[33]
or group communication in intermediate neural network layers
[34]. These works successfully minimize the performance trade-
off but miss the opportunity to exploit the model’s deployment
environment. With personalization, because the sub-problem
is easier to solve, a compressed specialist model suffices to
perform on par with a more complex generalist model. For
example, using a model selection approach conditioned on
speaker genders, a specialist using 512 hidden units produced
speech signal improvement comparable to a generalist model
using 1024 hidden units, yielding an effectively “lossless” 50%
reduction in run-time computational complexity [35].

Model selection is another approach for designing adaptive
models. Four recent studies investigated run-time model
selection as another means for test-time adaptation [35]–[38].
To develop a speech enhancement network through model
selection, one must first cluster a large training corpus into
non-overlapping subsets. Next, separate specialist submodules
must be trained, each optimized around one of those subsets.
Lastly, the network requires a classifier that assigns the unseen
speaker’s noisy utterances to the best-suited submodule at test-
time. Sparse activation of these submodules helps to optimize
performance and reduce run-time computational complexity
[35]. By its design, model selection is inherently a zero-shot
solution because the enhancement network does not utilize
any prior knowledge about the target user. Rather, using
a noise-robust classifier and choosing the best submodule
proxies adaptation. We note that if all the submodules are very
active during test-time, then the memory footprint savings of
model selection are limited. Additionally, the network’s spatial
complexity linearly scales with the number of clusters, making
model selection impractical for edge computing devices.

Another recent study explored knowledge distillation as a

proxy for test-time personalization that can overcome all of the
pitfalls mentioned above [39]. This dual-network configuration
works by first training a teacher model, which processes
test-time noisy signals from the unknown target speaker to
produce pseudo-clean speech targets. A student model (with
significantly fewer parameters than the teacher model) must
learn using these pseudo targets. Through this framework, the
student model is adapted to the target speaker’s characteristics
and target environment. We must recognize that the student
model’s performance is fundamentally upper-bounded by the
teacher model’s, favoring a larger and more powerful teacher.
If the teacher model is prohibitively large, it must be placed
off-device, which entails online-offline parameter updating
procedures. Thus, in noting the limitations of model selection
and knowledge distillation, we put forward resource-efficient
methods for personalizing a model in this paper.

Other research in the last few years has explored SSL for
general-purpose speech enhancement. An early work employed
zero-shot SSL in a student-teacher framework, showing a
student network that implicitly learned to perform speech
enhancement despite being trained to minimize automatic
speech recognition error [40]. More recently, another work
describes an SSL framework that uses two autoencoders, trained
to reproduce either clean speech or noisy speech [41]. The
authors enforce a coupling of the two autoencoders’ latent
spaces through cycle-consistency loss functions. At inference
time, the autoencoder trained only using mixture signals has
its decoder swapped out, thus achieving zero-shot speech
enhancement. These studies are limited to speaker-agnostic
enhancement, and in particular, do not exploit self-supervised
learning as a method for in-domain training. In contrast, two
recent studies investigated using noisy speech data as target
signals specifically for in-domain speech enhancement training
[42], [43]. The PseudoSE method of this paper is similar to what
they propose, however, our study investigates the benefits of
noisy training targets specifically with regards to single-speaker
model personalization and model compression. Additionally,
our study is the first to bootstrap noisy target training with
contrastive learning with regards to speech enhancement.

Recently, an SSL framework known as mixture invariant
training (MixIT) [44] was proposed as an alternative to the
fully-supervised permutation invariant training (PIT). It is
a procedure for developing source separation systems using
only mixtures of mixtures (MoM), i.e., linear combinations of
arbitrary audio signals. Considering MixIT as a pretext task,
it introduces systematic mismatch by design since the input
MoMs have twice the number of expected sources at test-time.
A recent study used MixIT by successfully adapting models
to a set of speakers through joint training over in-domain
and out-of-domain data [45], however the model compression
implications were unexplored. In comparison to MixIT, the
PseudoSE task may be viewed as a more speech enhancement-
oriented version: while MixIT estimates every composite signal,
PseudoSE learns explicitly from the combination of a target
speaker’s noisy utterance plus an injection noise. Therefore, a
PseudoSE model is able to target the pseudo speech source
and can omit reconstructing the injection noise.
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III. BASELINE FULLY-SUPERVISED METHOD FOR
PERSONALIZED SPEECH ENHANCEMENT

For our discussion, we assume a hypothetical set S that
encompasses all of the target speaker’s clean utterances. Given
the privacy concerns and technical difficulties mentioned in
Sec. I, we assume that this set is inaccessible to the training
algorithm; therefore, it cannot be used for personalization. In
the FSL context, the short recordings provided by the target
speaker represent a small subset of their unavailable ground-
truth clean speech, i.e., Sf-tr ∈ S. The simplest approach
for developing a personalized speech enhancement model
would be to formulate a fully-supervised task over this subset.
However, we theorize that the limited amount of data may
result in suboptimal generalization performance and over-fitting.
To remedy this issue, instead of randomly initializing the
personalized model’s parameters, one can first train a speaker-
agnostic model and then finetune its parameters using Sf-tr.
Then, using transfer learning, we adapt a generalist model into
a specialist model.

A. Training a Generalist

Training a generalist requires a large set of many anonymous
speakers G as well as a large set of various non-stationary
noises N. A training set of artificial mixture signals x can
be made by selecting random utterances s ∈ Gtr and noises
n ∈ Ntr and summing the signals, i.e. x = s+ n. With each
mixture, one may randomly scale n to be louder or quieter,
thereby exposing the model to mixtures with varying signal-
to-noise ratios (SNR). The generalist model can be described
as a mapping function f(·) with parameters WSE which is
trained such that f(x;WSE) = y ≈ s, where the estimate y
approximates the training target s. The generalist’s loss function
LSE is equivalent to the discrepancy between estimates and
targets: E(y ‖ s).

LSE = E(y ‖ s) (1)
WSE ← argmin

WSE

LSE (2)

There are many possible choices for the signal discrepancy
function E . The well-known signal-to-distortion ratio (SDR)
metric [46] is frequently used as a general-purpose loss
function for fully-supervised monaural time-domain speech
enhancement [47]. A larger SDR correlates to improved speech
quality, so when used as a neural network loss function, we
minimize the negative of SDR. For a source signal v and
estimate signal v̂, negative SDR loss is defined as follows:

ESDR(v̂ ‖ v) = −10 log10
[ ∑

t(vt)
2∑

t(vt − v̂t)2
]
. (3)

For generalists, what matters most is their generaliza-
tion power. Although synthetic mixtures for fully-supervised
training are straightforward to construct, models with low
architectural complexity may not learn much from the data.
That is, a smaller model may fail to enhance certain speakers’
voices or remove particular noises—even if the training corpora
for speech and noise signals were very large. In contrast, a
bigger model may generalize very well, but using it in a
resource-constrained device could be burdensome.

s ∈ Gtr

Noise Injection x = s+ n; n ∈ Ntr

Enhancement y = f (x;WSE)

Fig. 2. Multi-speaker (fully-supervised) speech enhancement setup. The
training target is clean speech s and the model parameters WSE are iteratively
updated to minimize the loss function LSE. In the FSL context, we can finetune
the model by sampling s from the small speaker-specific dataset Sf-tr.

B. Personalization via Transfer Learning

The speaker-agnostic speech enhancement model may then
be finetuned around the particular test-time speaker using
transfer learning. Transfer learning is a straightforward fully-
supervised approach to personalization, which handles the
gap between the large multi-speaker dataset G and the small
target speaker-provided clean dataset Sf-tr. To do this, we
create speaker-specific artificial mixture signals x composed
stochastically by sampling from the limited subset s ∈ Sf-tr
and the training noises n ∈ Ntr. The parameters WSE are once
again iteratively updated in order to minimize the distance
between estimate signals y and target signals s. The finetuning
loss function is equivalent to Eq. (2), but during finetuning, the
model receives exposure to utterances from the target speaker.

The success of transfer learning as a personalization method
depends on how effective the pretraining and finetuning steps
are. For example, a large model highly generalized thanks to
pretraining might barely adjust its parameters during finetuning.
On the other hand, smaller models with weaker generalization
capabilities may see a more significant performance boost
through finetuning. Ultimately, the success of finetuning is pri-
marily tied to the quality and quantity of the finetuning dataset
Sf-tr. Suppose the number of signals within Sf-tr is too few; in
that case, finetuning may fail to improve performance even
though Sf-tr consists of the target speaker’s vocal characteristics.
Also, because the FSL context only applies when the target
speaker manually provides their clean speech, transfer learning
is not viable without Sf-tr.

Fig. 2 shows a visualization of the baseline pretraining
process. The same signal transformations occur during transfer
learning, when adapting the generalist model into a specialist
model. If the target speaker does not provide Sf-tr, the generalist
model remains unadapted and therefore non-personalized.

IV. PROPOSED SELF-SUPERVISED METHODS FOR
PERSONALIZED SPEECH ENHANCEMENT

Here we describe our proposed self-supervised learning
(SSL) methods, designed to improve the performance of the
personalized speech enhancement models in either FSL or ZSL
contexts. Through SSL, we aim at pretraining an SE model
that can surpass the performance of the baseline generalist.
This pretraining can suffice as a personalized solution (i.e.,
ZSL). Or, we can further finetune the self-supervised model
by using the small amount of target speech signals if they are
available (i.e., FSL).
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Fig. 3. An overview of the baseline and proposed personalization methods. With the baseline, the SE model is first pretrained using speaker-agnostic dataset
as a generalist and then finetuned using clean speech signals of the test user. This method relies entirely on the finetuning process for personalization. On the
other hand, the proposed methods provide various SSL options to pretrain the model using noisy, but speaker-specific speech, which serve a better initialization
point for the subsequent finetuning process, leading to better SE performance. The pretrained models can also conduct a certain level of SE as a ZSL model,
while the FSL-based finetuning tends to improve the pretrained model.

Our utilization of SSL stems from the assumption that noisy
utterances from the target speaker s̃ ∈ S̃p-tr are much more
available than clean ones, i.e., |S̃p-tr| � |Sf-tr|. Our proposed
pretraining methods aim to exploit these noisy observations as
much as possible to learn the specificity of the test-time speaker.
As is the case with SSL methods, the model parameters will
be initialized via a pretext task, which is a made-up task that
does not reflect a true speech enhancement function.

We assert, for example, that smart devices are likely to
accrue many noisy recordings from the test-time speaker
over time and with usage, i.e., |S̃p-tr| � |Sf-tr|. Although we
want to exploit these in-the-wild recordings |S̃p-tr|, we do not
know whether the observations are clean or noisy, i.e., the
data is unlabeled. Therefore, we have to assume that |S̃p-tr|
holds contaminated versions of some unobserved target clean
speech signal |Sp-tr|. We refer to this unobserved contamination
process as premixture. If we consider a hypothetical set of
premixture noises m ∈ Mtr, then we can form a basic
framework for premixture, i.e., s̃ = s+m. Because the true
speech and noise signals which compose s̃ are unknown, the
premixture observations are unsuitable for conventional fully-
supervised speech enhancement tasks nor for finetuning-based
personalization.

Fig. 3 summarizes the training procedure of the baseline
generalist-based pretraining, comparing it to our proposed
SSL-based pretraining. Both approaches to personalization
are based on transfer learning. Finetuning via FSL improves
the baseline SE performance, exposing the generalist to the
target speaker. However, the proposed SSL methods already
achieve a certain level of personalization by using noisy speech
signals of the target speaker, leading to a better ZSL solution
than the generalist.

A. Training a Specialist through Pseudo Speech Enhancement
Depending on the user’s test-time acoustic conditions, it is

likely that the premixture noise component m has a loudness
that varies over time. Then it follows that, at certain times,
this premixture noise may be quiet enough such that the test-
time speaker’s voice s is the dominant signal. In these cases
where there is a favorable premixture with a high signal-to-
noise ratio (SNR), the noisy speech utterances s̃ could be

s ∈ Sp-tr

Premixture s̃ = s+m; m ∈Mtr

Noise Injection x̃ = s̃+ n; n ∈ Ntr

Enhancement ỹ = f (x;WPseudoSE)

Fig. 4. Single-speaker (self-supervised) pseudo speech enhancement setup.
The training target is pseudo-clean speech s̃, therefore the model parameters
WPseudoSE are iteratively updated to minimize the loss function LPseudoSE. We
simulate the process of sampling from the in-the-wild recordings, s̃ ∈ S̃p-tr,
using the premixture data transformation.

used as pseudo speech references. We can then formulate a
pretraining process which we call pseudo speech enhancement
(PseudoSE). This method operates using “doubly-degraded”
artificial mixture signals. We construct the model inputs by
sampling the abundant premixture set s̃ ∈ S̃p-tr and injecting
the additional training noises n ∈ Ntr, i.e., x̃ = s̃+n. This is a
double-degradation process as s̃ has been already contaminated
by m̃.

Consequently, the self-supervised model is a mapping
function f with parameters WPseudoSE that is trained to remove
the injection noise and recover the pseudo speech target, i.e.,
f(x̃;WPseudoSE) = ỹ ≈ s̃. Note that this self-supervised
objective is not equivalent to the fully-supervised objective due
to the difference in training target. f is only trained to recover
the premixture utterance s̃, therefore it is not a true speech
enhancement function, i.e., WPseudoSE 6=WSE.

LPseudoSE = E(ỹ ‖ s̃) (4)
WPseudoSE ← argmin

WPseudoSE

LPseudoSE (5)

Fig. 4 shows a visualization of the PseudoSE pretraining
process. After the model parameters WPseudoSE are learned, we
may apply finetuning using known clean speech from the scarce
set Sf-tr. In this FSL personalization context, the training targets
are genuine clean speech utterances s ∈ Sf-tr. Therefore, the
parameters from the pseudo enhancement function WPseudoSE
are iteratively updated in order to fit a real speech enhancement
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Fig. 5. The proposed framework for contrastive mixtures. Solid lines indicate
signal path while dashed lines show loss terms.

function. Once again, the finetuning loss function is equivalent
to Eq. (2) using the speaker-specific mixtures.

There are trade-offs to note when using self-supervised
learning. On one hand, the success of PseudoSE pretraining is
bounded by the noisiness of s̃, the impure training targets.
But on the other hand, this pretraining scheme uses data
derived only from the target speaker, thereby bypassing the
need for generalization. Unlike the baseline method, which
recasts a generalist as a specialist, PseudoSE pretraining directly
develops a specialist model. However, the PseudoSE model
could under perform when compared to a hypothetical fully-
supervised model exposed to ample clean speech from the
target speaker. If finetuning is not possible, the PseudoSE
model could serve as a zero-shot solution on its own. But if
finetuning is possible, we claim that PseudoSE serves as a
more optimal pretraining scheme as opposed to the baseline
speaker-agnostic SE.

B. Training a Specialist through Contrastive Mixtures

We hypothesize that the quality of the pretraining procedure
greatly impacts how the downstream denoising model will
personalize. Even if the premixed noisy speech set S̃p-tr and the
deformation noise set Ntr are large, the quality of the features
learned through PseudoSE are bounded by how noisy S̃p-tr
really is. Our proposed contrastive mixtures (CM) pretraining
procedure addresses this by employing a pairwise contrastive
learning mechanism. In the CM framework, the denoising
model f(·) pretrains over pairs of mixtures (x̃1, x̃2) and
outputs pseudo-cleaned estimates (ỹ1, ỹ2). We create two kinds
of mixture pairs, positive and negative, which are illustrated
in Figure 5.

In a positive pair, both input examples (x̃⊕1 , x̃⊕2 ) share
the same premixture source s̃⊕, but are differently deformed;
that is, the mixing process makes the input pair dissimilar.
Therefore, in addition to maximizing the similarities between
estimates and source (ỹ⊕1 to s̃⊕ and ỹ⊕2 to s̃⊕), the model
fCM(·) must also satisfy the contrastive objective based on the
fact that ỹ⊕1 and ỹ⊕2 stemmed from the same pseudo source.
We express these objectives as a positive pair loss function Lp

in the following form:

Lp = E(s̃⊕||ỹ⊕1 ) + E(s̃⊕||ỹ⊕2 ) + λp
[
E(ỹ⊕1 ||ỹ⊕2 )

]
, (6)

where λp scales the contribution of the contrastive loss term.
In a negative pair, each mixture is made from a different

pseudo source (s̃	1 6= s̃	2 ), but with a shared deformation, i.e.,
x̃	1 = s̃	1 + n	 and x̃	2 = s̃	2 + n	; in other words, the

negative pair mixing process makes the originally different
inputs more similar to one another. Accordingly, in addition to
the source-wise denoising objectives, the dissimilarity between
the estimates ỹ	1 and ỹ	2 must be taken into consideration. We
express these objectives as a negative pair loss function Ln in
the following form:

Ln = E(s̃	1 ||ỹ	1 ) + E(s̃	2 ||ỹ	2 )
+ λn

[
max

(
E(s̃	1 ||s̃	2 ), E(ỹ	1 ||ỹ	2 )

)]
, (7)

where λn controls the contribution of the contrastive loss
term. Note that the max function sets up the bound for the
disagreement term E(ỹ	1 ||ỹ	2 ) comparing it with the “desired”
disagreement level of the target pseudo sources E(s̃	1 ||s̃	2 ),
rather than enforcing an unbounded disagreement.

Both Lp and Ln consist of two terms: the source-to-estimate
errors and the estimate-to-estimate errors. The former term
characterizes the main speech enhancement loss, while the
latter term provides the proposed contrastive regularization.
The model ultimately minimizes the sum of these two losses,

LCM =

T∑
t=1

Lp(t) +

T∑
t=1

Ln(t) (8)

WCM ← argmin
WCM

LCM, (9)

where T is the number of positive or negative pairs within the
batch and Lp(t) and Ln(t) denote the loss for the t-th pair. If
the regularizing contrastive terms are omitted, i.e., by setting
λp = 0 and λn = 0, it can be shown that LCM reduces to Eq.
(4). Four our experiments, we set T to be half of the batch
size. To find optimal choices for λp and λn, we run an ablation
study as described in Sec. VI-A.

Our proposed CM approach differs from the SimCLR model
[19] in multiple regards: (a) it uses a more sophisticated noise
injection for data augmentation to mimic the real-world noisy
speech mixture generation process, i.e. by using non-stationary
noise sources; (b) the introduction of the negative pairs more
precisely reflects the source separation concept underlying our
SE problem and yields a more discriminative feature than a
positive pair only; and, (c) having the traditional SE loss term
prevents trivial solutions to the contrastive loss-only case—
estimating very similar ỹ	1 and ỹ	2 that do not recover the
pseudo sources.

C. Data Purification

When it comes to fully-supervised pretraining, we know that
the target signals are clean because they originate from the large
labeled dataset Gtr. However, the target signals’ cleanliness is
ambiguous in the case of self-supervised pretraining, which
utilizes S̃p-tr as the pseudo source. Based on our formulation of
the premixture process in Fig. 4, two factors determine whether
the pseudo sources s̃ are too degraded to be usable. These are:
the sparsity of premixture noise m, as well as the segmental
SNR between s andm. For example, ifm is sufficiently sparse,
portions of s̃ may contain near-clean speech. Considering all
the available noisy utterances s̃ ∈ S̃p-tr, we hypothesize that
utterances with a higher SNR may serve as more useful target
signals than other noisier utterances, even if none of them
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Premixture s̃⊕ = s+m; m ∈Mtr

Noise Injection x̃⊕1 = s̃⊕ + n⊕1 ; n
⊕
1 ∈ Ntr

Noise Injection x̃⊕2 = s̃⊕ + n⊕2 ; n
⊕
2 ∈ Ntr

Enhancement ỹ⊕1 = f
(
x̃⊕1 ;WCM

)
Enhancement ỹ⊕2 = f

(
x̃⊕2 ;WCM

)
s1 ∈ Sp-tr

Premixture s̃	1 = s1 +m1; m ∈Mtr

s2 ∈ Sp-tr

Premixture s̃	2 = s2 +m2; m ∈Mtr

Noise Injection x̃	1 = s̃	1 + n	; n	1 ∈ Ntr

Noise Injection x̃	2 = s̃	2 + n	

Enhancement ỹ	1 = f
(
x̃	1 ;WCM

)
Enhancement ỹ	2 = f

(
x̃	2 ;WCM

)
Fig. 6. Single-speaker (self-supervised) contrastive mixtures setup. With
positive pairs, there is a single training target, pseudo source s̃⊕. With negative
pairs, there are two different training targets, pseudo sources s̃	1 and s̃	2 . The
model parameters WCM are iteratively updated to minimize the loss function
LCM.

are completely clean. The proposed self-supervised pretraining
methods can benefit from knowing where the cleaner frames
within s̃ may be.

For that reason, we put forward a data purification (DP)
pipeline. In essence, we modify the discrepancy function E to
incorporate a weighting vector p. To generate this DP weighting
vector, we first train a separate neural network that estimates the
frame-by-frame SNR of the premixtures. The quality estimator
network h is a regressive model trained over a diverse set of
training speakers and noises (i.e., Gtr and Ntr). It outputs a
vector of segmental SNRs, α̂. Hence, the network h works
as a general-purpose speech quality estimator, that has no
prior knowledge of the test-time speaker or the test-time noisy
environment. Given an estimate signal v̂ and a target signal
v both of length L, their residual is r = v − v̂, and the
frame-by-frame/segmental SNR (SegSNR) is defined as:

SegSNRj(v, v̂) = 10 log10

[∑Hj+N−1
i=Hj (wi −Hjvi)2∑Hj+N−1
i=Hj (wi −Hjri)2

]
,

(10)
where N is the frame size, H is the hop size, j is a zero-based
frame index (i.e. 0 ≤ j ≤ d LH e− 1), and vector w comes from
the Hann window function of length N . We then formulate
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Fig. 7. Illustration of the SNR predictor inputs and outputs. The first subplot
features an example premixture/pseudo source s̃. In the second subplot, the
SNR predictor network h estimates the frame-wise (i.e., segmental) SNR of
the premixture. The training objective of h is to minimize the loss between
estimates α̂ and targets α. The third subplot shows the frame-by-frame SNR
estimates converted into weights using the logistic function, i.e. p = σ(h(s̃)).

the training process of the SNR Predictor network as follows:

x = s+ n; s ∈ Gtr, n ∈ Ntr

α = SegSNR(s,x)

α̂ = h(x;Wh)

Wh ← argmin
Wh

MSE(α̂,α), (11)

Note that the SNR predictor inputs are of length L, but its
outputs are of length d LH e; in other words, x’s length is
measured in samples but α̂’s length is measured in frames.

We can now apply a DP step to improve the reliability of the
pseudo-target s̃ during PseudoSE and CM pretraining. With
each iteration of pretraining, the SNR predictor h first analyzes
the input premixtures to estimate frame-wise SNRs, α̂ = h(s̃).
Next, we apply the logistic function σ to the α̂ logits in order
to obtain frame-by-frame weights:

p = σ(α̂) =
1

1 + e−α̂
. (12)

Lastly, we modify both PseudoSE and CM pretraining pro-
cedures to use EDP which promotes speech-prominent frames
in the loss function. To that end, we re-write Eq. (10) to
incorporate the frame-by-frame weights p. That is, the signal
discrepancy is computed between windowed segments, which
are then weighted by p and finally averaged across all frames.
Because this is a neural network loss function to be minimized,
we use the negative of weighted segmental SNR, which we
denote as SegSNR.

EDP(ỹ ‖ s̃) = SegSNR(ỹ, s̃;p)

= − 1

J

J−1∑
j=0

pj

[
10 log10

∑Hj+N−1
i=Hj (wi−Hj s̃i)

2∑Hj+N−1
i=Hj (wi−Hj r̃i)

2

]
(13)

Here, J is the number of frames d LH e. Additionally, the residual
vector is defined as r̃ = s̃− ỹ. This regressive model h does
not need to have pinpoint accuracy; as shown in Fig. 7, as long
as α̂ decently approximates α, the weights p will accurately
reflect the position of speech-prominent frames in the data.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. Y, ZZZ 2022 8

If we substitute EDP for E into the original PseudoSE loss
function—Eq. 4—we obtain a new data purified loss function:

LPseudoSE+DP = EDP(ỹ ‖ s̃). (14)

Note that the slope of the logistic function could be further
controlled by using an additional temperature weight applied
to α̂, which we opt not to investigate to focus more on the
main contributions.

Though substituting EDP within the PseudoSE loss function
is straightforward, it requires more nuance with the CM loss
function. CM utilizes pairwise inputs, so therefore, we must
compute pairwise weights as well.

p⊕ = σ(h(s̃⊕)), p	1 = σ(h(s̃	1 )), p
	
2 = σ(h(s̃	2 )) (15)

Specifically in the case of positive pairs, the underlying pseudo
source is the same, which is why there is only a single set
of weights p⊕. Negative pairs are made up of two pseudo
sources, so there are two sets of weights. For the negative
pair estimate-to-estimate losses, we use the product of the
two weight vectors, i.e. p	 = p	1 · p	2 . Using the appropriate
weights for every term, we rewrite Eq. (6) and Eq. (7) as:

Lp+DP =SegSNR(ỹ⊕1 , s̃
⊕;p⊕) +

SegSNR(ỹ⊕2 , s̃
⊕;p⊕) +

λp
[
SegSNR(ỹ⊕1 , ỹ

⊕
2 ;p

⊕)
]

(16)

Ln+DP =SegSNR(ỹ	1 , s̃
	
1 ;p

	
1 ) +

SegSNR(ỹ	2 , s̃
	
2 ;p

	
2 ) +

λn
[
max

(
SegSNR(s̃	1 , s̃

	
2 ;p

	),

SegSNR(ỹ	1 , ỹ
	
2 ;p

	)
)]

(17)

The data-purified positive and negative loss functions may now
be substituted in Eq. (8) to obtain the overall CM+DP loss
function:

LCM+DP =

T∑
t=1

Lp+DP(t) +

T∑
t=1

Ln+DP(t). (18)

V. EXPERIMENT SETUP

In our experiments, we compare the baseline fully-supervised
approach with the two proposed self-supervised approaches
for training a personalized speech enhancement model. Note
that there are two rounds of model training (Fig. 3): one
round that pretrains the model, and another “finetuning” round
that only uses the available clean target speaker data (either
5 sec or 30 sec). We also assess the benefits of adding the
data purification step to both self-supervised methods. We use
the following shorthand notation to refer to each pretraining
method:
• SE: Models trained to minimize Eq. (2). This is our gen-

eralist baseline, the speaker-agnostic speech enhancement
system. It generalizes well only if its model capacity is
large enough.

• PseudoSE: Models trained to minimize Eq. (4). The
proposed self-supervised method relies solely on noisy
speaker-specific data S̃p-tr.

• PseudoSE+DP: Models trained to minimize Eq. (14). This
method refines the prior method through data purification.
That is, the model uses a weighted segmental MSE as its
discrepancy function in order to filter out noise-dominant
frames within S̃p-tr.

• CM: Models trained to minimize Eq. (8). This self-
supervised method uses pairwise inputs that share either
the same pseudo source or injection noise. CM provides
additional regularization to PseudoSE through the con-
trastive loss terms.

• CM+DP: Models trained to minimize Eq. (18). The
pairwise weights inform the model of the mutual speech-
dominant frames, thereby focusing the contrastive reg-
ularization specifically wherever the test-time speech is
prominent.

A. Datasets

Table I provides a glossary of all the datasets and their
notation used throughout this paper. Note that we subscript
all datasets with either ‘tr’, ‘vl’, or ‘te’ to indicate training,
validation, or test partitions respectively. For this paper, we limit
the scope of personalization specifically regarding the test-time
speaker and not the test-time environment. The extension of our
methods towards environment adaptation is straightforward.

In order to report objective signal improvement results, we
designed experiments that simulate the personalization context.
We therefore artificially mix signals from three publicly-
available audio datasets: we use LibriSpeech [48] for clean
speech recordings, FSD50K [49] for premixture noises, and
MUSAN [50] for additionally injected noises.

Out of the LibriSpeech train-clean-100 subset, we set aside
20 speakers to be the personalization targets; in other words,
there are K = 20 speaker-specific datasets S(k) where k ∈
{1, . . . ,K}. We omit the speaker index k going forward to
simplify notation. The remaining speakers within Librispeech’s
train-clean-100 and train-clean-360 subsets are consolidated
into the speaker-agnostic dataset G. For all speech and noise
corpora, we discard audio files shorter than 4 sec and resample
everything to 16 kHz.

We partition each speaker-specific dataset S into five sets as
shown in Table I. The utterances are sorted by duration and
grouped such that approximately 30 sec are available for testing
the model (Ste), 30 sec for validating finetuned models (Sf-vl),
60 sec for FSL-based finetuning (Sf-tr), and 30 sec to validate
the self-supervised pretraining methods (Sp-vl). The remaining
22.5min are used for pretraining (Sp-tr). Subsequently, for each
of the 20 personalization targets, a test set is constructed using
100 mixtures that combine Ste with Nte.

Mtr and Mvl follow the train and val splits provided in
FSD50K’s dev folder. Using the FSD50K provided tags, we
omit files tagged as either “speech” or “music”.

The unseen test-time noises, Nte, are derived from MUSAN’s
sound-bible folder. Using MUSAN’s free-sound folder, sixty
random noises are set aside for Nvl and the remaining noises
make up Ntr.

These datasets are carefully chosen and arranged to represent
our use-case scenarios. First, we need a large dataset G to
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TABLE I
GLOSSARY OF DATASETS PAIRED WITH EXPERIMENT-SPECIFIC CORPORA.

Set Subset Duration Quantity Description Corpus

G Gtr 443h 1,132 spkrs Clean speech from many anonymous speakers LibriSpeech [48]Gvl 8h 20 spkrs

S

Sp-tr 22.5min /spkr

20 spkrs

Target speaker’s noisy speech (corrupted by M), referred to as the set of
premixture data

LibriSpeech [48]

Sp-vl 30 sec /spkr

Sf-tr 60 sec /spkr Target speaker’s provided clean speech (only available in FSL context)Sf-vl 30 sec /spkr

Ste 30 sec /spkr
Set-aside clean speech from the target speaker used only for objective
model evaluation

M Mtr 48h 13,339 noises Premixture noises corrupting the majority of target speaker’s utterances;
on their own, inaccessible during model training FSD50K [49]Mvl 7h 1,929 noises

N

Ntr 5h 616 noises Injection noises used during model pretraining and fine-tuning
MUSAN [50]Nvl 0.5h 60 noises

Nte 0.5h 60 noises Injection noises never seen during any model training, used to prepare
target speaker-specific test sets

encompass diverse speaker characteristics. Second, we ensure
that the 20 personalization target speakers have enough clean
speech signals Sp-tr in order to simulate the abundant premixture
signals S̃p-tr. The premixture noise sources Mtr are also very
diverse so as to simulate various acoustic environment the
user can be situated in. Tallying the unique FSD50K audio
tags, our experiment simulates each of the 20 target speakers
being degraded by approximately 160 noise types. Through the
premixture process, we combine s and m such that the SNR
is uniformly random between 0 dB to 15 dB. Psychoacoustic
research has shown that this SNR range describes many real-
world sound environments [51], [52]. Lastly, mixtures, which
are made using the injection noise set N, have SNRs chosen
uniformly at random between −5 dB to 5 dB.

There are other choices of speech datasets, besides Lib-
rispeech, which contain real-world recordings of in-the-wild
noisy speech, e.g., AudioSet [53]. Although our proposed
self-supervised training methods are intended for in-the-wild
data, it is often the case that such datasets do not possess
enough noisy recordings from a single consistent speaker.
More importantly, in order for us to report objective signal
improvement, we require ground-truth clean speech recordings
from the test-time speaker. Therefore, our experiments simulate
the personalization problem through the three separate corpora,
constructing numerous artificial mixtures and premixtures.

B. Metrics

With our experiments, we report three metrics frequently
used in speech enhancement research: SDR [46], PESQ [54],
and extended STOI [55]. Unlike the objective measurement
SDR, the latter two are perceptual metrics that highly correlate
to speech intelligibility. As all of our loss functions are SDR-
based, our models in this experiment do not explicitly optimize
for intelligibility. Each one of the 20 target speakers has their
own test set, made up of 100 mixtures with input SNR between
−5 dB to 5 dB. All three metrics are computed between the
estimate signals and their corresponding target signals.

TABLE II
LIST OF MODEL ARCHITECTURES, CONFIGURATIONS, AND SIZES.

Architecture Size Configuration Params MACs

Conv-TasNet

Large Bc = 64, Hc = 256 1.0M 8.4G
Medium Bc = 32, Hc = 128 437.8 k 3.5G
Small Bc = 16, Hc = 64 224.1 k 1.8G
Tiny Bc = 8, Hc = 32 138.8 k 1.1G

C. Neural Network Architectures

Well-established neural network approaches for speech
enhancement utilize time-frequency masking. In order to
overcome latency and phase reconstruction limitations, more
recent neural network algorithms operate in an end-to-end
manner, i.e., by learning a mapping directly between the time-
domain input and output signals [56]–[58]. To that end, we
assess the performance of generalist and specialist speech
enhancement models using ConvTasNet (CTN), which is
a popular fully-convolutional time-domain model for audio
separation [10]. It operates as follows: first, the encoder
module maps input waveforms into latent representations. Then,
the separation module calculates a multiplicative mask that
separates the target source. Lastly, the decoder module maps
the masked latent features back to the time-domain, yielding
estimate waveforms. The CTN architecture may be generalized
to separate multiple audio sources; however, our separation
module estimates only one mask to specifically separate speech
from noise. With each size variant, we adjust the number of
channels in the separation module’s bottleneck (Bc) as well
as the number of channels in convolutional blocks (Hc) such
that the expansion ratio Hc/Bc ≈ 4 [59].

As shown in Table II, we designed a tiny, small, medium,
and large-sized variant of CTN such that the total number
of trainable parameters is less than or equal to one million.
MACs indicate the number of multiply-accumulate operations,
correlating to computational complexity. As shown in prior
work, personalized speech enhancement is a subset of the
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broader universal speech enhancement problem, therefore
specialist models can achieve comparable performance to
generalist models using fewer parameters [22], [35]. Through
our experiments, we report the performance of the different
sized variants to observe whether this model compression trend
applies to the modern fully-convolutional models.

D. Implementation Details

All models were implemented using PyTorch [60] and
trained on NVIDIA Tesla V100 graphics cards. We used the
ConvTasNet implementation found in the Asteroid package
[61]. All experiments have a fixed batch size of 64. We utilize
the Adam optimizer [62] with an initial learning rate of 1e−3.
When finetuning over clean speech data (Sf-tr), the learning
rate is instead 1e−4. For every 1000 mixtures processed, we
compute SDR improvement averaged over a fixed set of 100
validation mixtures; the trial is terminated if the mean validation
SDR does not improve after 100 000 further mixtures.

Using the described early stopping scheme, we observed
various trends with regards to the training time. On average,
generalist models trained over 1.4M mixtures for all four sizes,
whereas specialist models trained over 851 k, 803 k, 637 k, and
593 k mixtures for the Tiny, Small, Medium, and Large model
sizes respectively. When these models undergo finetuning using
5 sec of clean speech, the specialists converge after seeing 6.4 k,
6.0 k, 5.7 k, and 5.2 k mixtures for the Tiny, Small, Medium,
and Large model sizes respectively.

Source code for this experiment may be found at https:
//saige.sice.indiana.edu/research-projects/pse-ssl-dp.

VI. EXPERIMENT RESULTS

A. Contrastive Mixtures Ablation Study

Prior to starting the full personalization experiment, we
first determine optimal values for λp and λn which modulate
the contrastive mixtures positive and negative loss terms—Eq.
(6) and (7) with DP variants (16) and (17). Therefore, we
run an ablation study of contrastive mixtures by performing
a grid search over potential choices: 1, 1e−1, 1e−2, 1e−3,
1e−4, and 0. We can assess the effectiveness of the positive
and negative pairs by setting either one of λn to λp to 0,
respectively. For the purposes of the ablation study, we run
experiments in which the personalized speech enhancement
system is fixed as a small ConvTasNet as specified in Table
II. This is done for three out of the twenty personalization
target speakers from LibriSpeech. This results in 216 total
trials, given that there are 36 λ combinations and 3 target
speakers, plus the option for data purification to be enabled
or disabled. We report the validation set signals’ SDRs after
pseudo-enhancement, averaged across the three speakers and
across 100 validation premixtures utterances. In summary, a
small ConvTasNet is trained over speaker-specific premixtures
using a batch size of 64, a learning rate of 1e−3, and the CM
loss function: either Eq. (8) or (18).

From Fig. 8, we observe that there are many working
combinations of λp and λn, so long as λp < 1. This suggests
that CM is robust to the hyperparameter selection. The top-left
corner of both subplots represents models trained with the
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Fig. 8. Ablation study of the contrastive mixtures (CM) loss function, where
we vary λp and λn to adjust the contribution of the positive and negative pair
loss terms. Pseudo-enhancement is performed using the small ConvTasNet
architecture, and results are averaged across three test-time speakers.

contrastive loss terms disabled—effectively, trained through
PseudoSE. By scanning the left-most column and top-most
row, we can see that the negative pair loss terms improve the
model more significantly than the positive pair loss terms.

When pretraining without data purification, the most-optimal
configuration happens to be with λn = 1 and λp = 0, yielding a
0.34 dB (or 4.4%) improvement over PseudoSE. If both λs are
non-zero, we see slight variations in the validation performance.
When the noisy training data is non-purified, it is possible
that the positive pair contrastive loss compels the model to
enforce similarity on highly degraded pseudo-sources. These
cases emphasizing premixture noise reconstruction similarity
could cause the learned parameters to drift slightly away from
speech-focused personalization.

The bottom subplot of Fig. 8 shows models pretraining
through CM with data purification. Here, the most-optimal
configuration is λn = 0.001 and λp = 0.1; the self-supervised
model sees a 0.43 dB (or 6.6%) improvement over PseudoSE.
Notably, the positive pair-only models are able to obtain a
0.32 dB (or 4.9%) improvement. With the CM loss functions
weighted towards speech-dominant frames, we see that the
positive and negative loss terms synergies more effectively.

One last observation is that the validation SDR of models
using DP is overall lesser than that of models not using DP.
This follows our hypothesis that the DP-based loss functions are
more similar to the true fully-supervised speech enhancement
loss. Note that all the self-supervised models are assessed on
pseudo enhancement during validation. Therefore, it is under-
standable that the DP-based models have a lesser validation
SDR improvement. The metrics computed at test-time assess
true speech enhancement performance; therefore, observing
this trend during validation alludes to greater enhancement.

Given our observation that CM works for many configu-
rations, as a convenience for all other experiments, we set

https://saige.sice.indiana.edu/research-projects/pse-ssl-dp
https://saige.sice.indiana.edu/research-projects/pse-ssl-dp
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Fig. 9. Experiment results. The improvement for each metric (SDR, PESQ, and STOI) may be calculated by subtracting the average input value from the
average value after enhancement. The plotted metrics are averaged over the 100 test set utterances for each of the 20 target speakers. The shading of each bar
corresponds to the amount of clean speech data from the target speaker used for finetuning: 0 sec (i.e., no finetuning), 5 sec, and 30 sec. Error bars show the
specific 95%-confidence interval per model and training configuration, averaged over all target speakers.

λn = 0.1 and λp = 0.1 with both non-purified and purified
models.

B. Efficient Personalized Speech Enhancement Study

Next, we discuss the results from the main experiment.
As described in in Sec. V, we consider 20 target speakers,
4 model sizes, 4 self-supervised pretraining methods, and 2
possible amounts of clean speech data. In terms of model
checkpoints, there are 4 unadapted SE models, 160 fine-tuned
SE models, 320 self-supervised PSE models, and 640 fine-
tuned PSE models, resulting in a total of 1124 trials.

Figure 9 shows test set results in terms of the three signal
quality metrics listed in Sec. V-B. Results are averaged across
20 test-time speakers, with different bars representing different
model sizes and training configurations.

C. ZSL Personalization Performance

Bars with the darkest shading represent the performance
of models in the ZSL personalization context, in which the
models lack access to clean speech from the target speaker.

1) Generalist Models’ Performance: The SE column’s left-
most bars show the performance of the bare generalist models’
performance. The generalists are able to enhance the noisy
test-time speakers in all cases, but it is clear that the larger
models (bars labeled L or M) show much better generalization
performance (up to 11.23dB SDR after enhancement) than the
smaller ones (lower rows). For the tiny generalist models, the
average SDR after enhancement is 8.92dB. This 2.31 dB range
reinforces our argument that the smaller generalists tend to be
poorer in generalization. Note that these baseline SE models

are non-personalized. As they are without any adaptation, we
can observe that the generalists’ performance correlates with
the architectural complexity because they are all trained using
a large dataset.

2) Personalization using PseudoSE: The PseudoSE column
shows the performance of the self-supervised models trained
through pseudo enhancement of noisy speech targets. The
model inputs are doubly-degraded observations of the test-time
speaker (S̃p-tr is mixed with additional noise sources Ntr), and
the model naı̈vely recovers the pseudo-source. There is a chance
that the pseudo targets are too far from clean speech, deviating
the learned parametric function from the ideal personalized SE
model. However, it is also possible that some parts of these
pseudo speech sources are somewhat clean enough in order for
the model to learn the target speaker’s speech traits. The left-
most bars (darkest shade) of the PseudoSE column do reveal
success in personalization—note that the confidence interval
of SDR enhancement narrows by using PseudoSE pretraining
compared to SE pretraining. This trend is less obvious with
perceptual metrics PESQ and STOI, but it is to be expected
as the models’ loss functions are SDR-based. PseudoSE does
produce improvements over the SE pretraining when the models
are tiny (9.53 vs. 8.91) or small (9.94 vs. 9.77). However,
when the model complexity is large enough, we see that
PseudoSE is unable to compete with the generalist model.
Compare the largest model trained using PseudoSE against the
largest speaker-agnostic SE model (10.28 vs. 11.23). Therefore,
we conclude that PseudoSE’s personalization performance is
significant only when the model is incapable of learning from
the large generic dataset.
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3) Impact of DP with PseudoSE: As shown in our prior
work [22], DP can identify cleaner frames from premixture
signals S̃p-tr and improve the usability of the target speaker’s
noisy speech signals. We observe a similar trend with our
ConvTasNet-based experiments. In particular, our results show
that the PseudoSE+DP pretraining scheme in the ZSL context
yields greater improvements over the plain PseudoSE in the
large model than in the smaller ones. For example, introducing
DP lifts the average performance of PseudoSE by 0.63 dB
(10.91 vs. 10.28) in the large models, while the tiny models
only see an average boost of about 0.38 dB (9.91 vs. 9.53).
Because PseudoSE’s efficacy is limited in the large models, the
gains from introducing data purification are more prominent.
However, it is still the case that the tiny model gains the most
from the consolidated personalization process, e.g., a 1.0dB
improvement from the baseline SE model (9.91 vs. 8.91).

4) Personalization using CM: The ZSL results of the
CM column are noteworthy because they compete with the
PseudoSE+DP results despite using non-purified data. For
example, CM results in better performance than PseudoSE+DP
in large models (11.06 vs. 10.91) and works on par with
PseudoSE+DP in small or tiny models. This shows that the
proposed CM loss functions help the model learn robust features
for personalized SE even though the signals used are noisy
observations (or unlabeled in the sense of classification). These
results validate the powerful feature learning capabilities of
contrastive learning. Although the contrastive self-supervised
learning paradigm has been explored in other research areas
(e.g., SimCLR for computer vision), we note that the proposed
CM pretraining method is specifically designed for source
separation problems.

5) Impact of DP on CM: We find that CM+DP does not
introduce significant improvements except with the largest
model. This is likely due to the robust feature learning ability
of CM, which is already competitive with the DP process.

6) Model Compression: Among the tiny-sized models, the
best-performing ZSL method for personalization is Pseu-
doSE+DP which produced an average SDR improvement of
9.91dB. We see that the personalized tiny model outperforms
the generalist small model (9.77dB), although it uses 62%
fewer model parameters and multiply-accumulate operations
(MACs) according to Table II. Likewise, the personalized
small model comes within striking distance the medium-
sized generalist (10.39 vs. 10.59) using less than 52% of
the spatial and computational complexity. Finally, the best
medium model after the CM personalization (10.89dB) has
its confidence interval overlapped with that of the largest SE
baseline (11.23dB), although its model complexity is less than
44%. From this we can conclude that, for lower-complexity
models, the proposed self-supervised ZSL personalization may
be viewed as a lossless model compression paradigm.

7) Success of Personalization: The height of the error bars
indicate the 95%-confidence interval of each model and training
configuration seen across the 20 target speakers. Using SE
generalist pretraining, we observe that this variance can be
as much as 0.9 dB for the tiny-sized models or 0.7 dB with
the large-sized models. Through the proposed PseudoSE and
CM methods, we see that the variance universally decreases

in the ZSL context. Therefore, our self-supervised pretraining
methods successfully adapt to the nuances of each test-time
speaker despite being trained using only noisy data. Our
results do show that introducing DP increases the variance
in performance once again. This is to be expected as the
availability of near-clean frames can differ greatly between
speakers. Similarly, DP’s reliance on the external SNR predictor
model is also a contributing factor.

D. FSL Personalization Performance

Bars with lighter shading represent the FSL context, wherein
models have 5 sec or 30 sec of clean speaker-specific data to
finetune over.

1) Generalist Models’ Performance: We observe that all
four sizes of the baseline models pretrained as generalists (SE)
are incapable of adapting over a small Sf-tr that has only 5 sec of
data. Using 30 sec of clean speech data does eventually produce
gains for all model sizes. The tiny-sized generalist sees the most
significant gains (0.62 dB) whereas the large-sized generalist
sees marginal benefit (0.27 dB). This trend implies that the
pretrained generalists are defined by model parameters that
are too far from the ideally personalized counterpart, requiring
much effort during the transfer learning process. In other words,
too few clean utterances do not suffice in achieving the domain
adaptation.

2) FSL after PseudoSE Initialization: We reiterate that our
self-supervised methods train using noisy speaker-specific data
with premixture SNRs in the 0 dB to 15 dB range. Hence,
PseudoSE pretraining over this noisy data proves to be useful
only for the tiny- and small-sized models (9.53 vs. 8.91
and 9.94 vs. 9.77), while the larger models do not benefit
from the simple SSL setup. However, with all model sizes,
finetuning using only 5 sec of clean data results in a significant
performance boost (10.02 vs. 8.92, 10.61 vs. 9.69, 10.98 vs.
10.59, and 11.37 vs. 11.08).

Similar boosts also appear when using PseudoSE+DP,
where all the performance scores are lifted by up to 0.84 dB
(11.92 vs. 11.08 in the largest models). Our results suggest
that finetuning is much more effective due to the speaker-
specific self-supervised pretraining. By comparing the middle
shaded bars in the PseudoSE+DP column with lightest shaded
bars in the SE column, we can also see the data efficiency
benefits of our self-supervised methods. In particular, after
the PseudoSE+DP pretraining, only 5 sec of clean speech
for finetuning achieve a greater mean SDR improvement
compared to generalists models finetuned using 30 sec of
clean speech. PseudoSE+DP achieves data efficiency with
all model sizes (10.46 vs. 9.53, 11.06 vs. 10.24, 11.51 vs.
11.06, and 11.92 vs. 11.50). Our results show that through
self-supervised pretraining, we are able to reduce reliance on
the target speaker’s private data by a factor of 6.

3) FSL after CM Initialization: In the ZSL context, CM
pretraining produced notable improvements over PseudoSE
likely due to the contrastive loss terms that introduce powerful
regularization. But we found that the performance gap between
CM and PseudoSE is nearly negligible in the FSL context.
When it comes to data purification, we found that CM+DP
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was less effective in the FSL contexts than PseudoSE+DP. This
is perhaps due to the data purification learning objective being
too different from the contrastive learning objective, leading
to a slightly sub-optimal joint learning objective. Nonetheless,
for the ZSL scenario, CM pretraining without data purification
has merit over PseudoSE, because it can alleviate the need for
training a robust SNR predictor.

4) Model Compression: Finetuning also augments the model
compression benefits of personalization. For example, we can
use a small-sized PseudoSE+DP model finetuned with only
5 sec of clean speech to get 11.06 dB SDR after enhancement
on average. This is on par with the largest SE model finetuned
over the same amount of clean speech data (11.08 dB). This
example shows a lossless 78% reduction in model parameters
and MACs.

VII. CONCLUSION

We put forward self-supervised learning approaches towards
personalized speech enhancement, highlighting their ability
to learn robust features from the target speaker’s noisy
observations. Our main ideas are based on the assumption
that noisy utterances of the target speaker might be more
available than clean speech. However, due to the noisy nature
of those unlabeled data, we propose more sophisticated SSL
treatments to learn useful features from them. PseudoSE sets
up a pretext SE problem where the enhancement target is
still a noisy utterance. In addition, data purification improves
the usability of the unlabeled (thus noisy) speech signals by
identifying cleaner frames and focus more on them. With the
purification step, PseudoSE becomes more realistic. Contrastive
mixtures add an additional regularization benefit to the loss
function, so that the pretext task is more relevant to the original
source separation problem.

We observe that all these methods can act as a zero-shot
personalization system which adapts to the target speaker’s
specificity with no additional clean speech used. In the few-
shot learning context, we emphasize that the proposed SSL
methods also serve as a better initialization scheme than a naı̈ve
generalist as the SSL methods learn from the target speaker’s
speech, even though it is contaminated. We found that the
proposed systems quickly adapt using only a few seconds of
test-user clean speech data, which is a too small amount for
the baseline generalists to effectively perform transfer learning.
Our results suggests that speaker-discriminative features can be
found even in noisy recordings. The benefit of personalization
is that it can reduce model complexity with no loss of SE
performance, e.g., small personalized models perform as good
as twice-larger general-purpose SE models. In addition, the
proposed SSL methods make the few-shot learning-based
personalization more data-efficient. Given that the transfer
learning-based personalization requires clean speech data from
the test-time users, reducing the required amount can improve
the user experience.
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