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Kai Zhen
NEURAL WAVEFORM CODING: SCALABILITY, EFFICIENCY AND PSYCHOACOUSTIC

CALIBRATION

Acoustic signal compression techniques, converting floating-point waveforms into a bitstream rep-
resentation, serve a cornerstone in the current data storage and telecommunication infrastructure.
Conventional digital signal processing (DSP) methodologies stem from human heuristics, which are
with limited performance and highly domain specific. For the past decade, deep neural networks
(DNNSs) have shown the potential to tackle this problem in a pure end-to-end manner, without rely-
ing on human priors or feature-engineering but the data itself. Besides, due to this general-purpose
computational paradigm, learning a compact representation of acoustic signals can be integrated
to various downstream applications such as speech encryption, recognition and natural language
understanding towards future multi-modal intelligent systems. However, the rise of DNNs brings
in not only potentials but also concerns, among which model complexity is a major challenge espe-
cially for acoustic coding systems. Most codecs are deployed on low power devices, such as mobile
phones and hearing aids which do not afford a gigantic neural network in spite of the impressive
performance.

We propose a research methodology to not simply discard conventional DSP methods by em-
bracing the fancy design of advanced neural networks, but revitalize those lightweight yet effective
techniques in the modern computational platform. By bridging these two approaches, we merge
merits from both sides in terms of performance and complexity. For instance, the performance of
end-to-end neural networks mainly depend on millions of parameters and optimization algorithms.
This is far from necessary in the domain of speech/audio coding, as the encoding and decoding
procedure can be conducted in multiple stages. We could implement this multistage quantization
scheme with deep neural network techniques to simplify the model topology and optimization. In

addition, speech production process is known to include several components, glottal pulses, noise
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excitation and the response of the vocal tract, etc. There is no need to model all components
with neural networks, when the response of the vocal tract, for example, can be simply well repre-
sented by an all-pole linear filter. By outsourcing sub-tasks to effective conventional DSP methods,
the workload of the neural network can also be reduced, accordingly. We are also aware of the
discrepancy between human auditory perception and objective loss functions used during model
training. By leveraging psychoacoustics, the model for mono-channel audio coding can be with
lower complexity yet higher coding efficiency, as its optimization better aligns human cognition.
In summary, the thesis presents a hybrid set of techniques incorporating conventional and domain
specific methods into the modern deep learning system, which facilitates an efficient yet powerful

solution for speech and audio waveform compression.

Minje Kim, Ph.D.

Robert Goldstone, Ph.D.

Donald S. Williamson, Ph.D.

Yi Shen, Ph.D.
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Chapter 1

INTRODUCTION

1.1 Thesis Overview

Acoustic waveform coding, where the encoder converts the acoustic signal into bitstreams and the
decoder synthesizes reconstructed signal from received bitstreams, serves an important role for
various purposes: to secure a voice communication [2][3], to facilitate data transmission [4], etc.
For a speech signal with a sample rate of 16 kHz (16,000 samples per second), if each sample is
represented by a 16-bit floating number, the bitrate is 256 kilobits per second (kbps). Note that
the sample rate for audio signals is even higher at 44.1 kHz with more than one channel. Such
bitrate levels pose a burden even on modern Internet architecture. With a well-designed speech
coding algorithm, the bitrate can be only 10% of the original bitrate or even lower, yet with a
decent speech intelligibility. Traditionally, problems as such are addressed by intensive study on
human auditory system with quite a handful well-tuned hyperparameters protected by patents,
including linear predictive coding (LPC) [5], adaptive encoding [6], and perceptual weighting [7].
Stemmed from those coding techniques, Speex, AMR-WB and Opus are some of the industrialized
speech codecs. AMR-WB consists of multiple steps including LPC to estimate spectral envelopes,
pre-emphasis and de-emphasis filterings to dim the blocking artifacts, perceptual weighting, the
high frequency extension, adaptive and algebraic coding of residuals, just to name a few.

The design of speech codecs is to address the trade-off among low bitrate, high perceptual qual-
ity, low complexity and delay, etc [8, [9]. Most conventional codecs are relatively computationally
efficient, yet with less satisfying performance especially in low bitrate modes. Most of these speech
codecs can be classified into two categorizes, vocoders and waveform coders [10]. Vocoders use few

parameters to model the human speech production process, such as vocal tract, pitch frequency,
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Figure 1.1: Tradeoffs in the design of speech/audio codecs

etc [I1], such that the decoded speech is not exactly “recovered” but rather “synthesized”. In
comparison, waveform coders compress and reconstruct the waveform to make the decoded speech
sound as similar to the reference as possible. Whether to choose a vocoder or a waveform codec
is mainly contingent on specific application scenarios. Vocoders are computationally efficient and
can encode speech at very low bitrates with limited performance, while waveform coders support a
much wider bitrate range with scalable performance and are more robust to noise.

The field has shown great enthusiasm towards deep neural network based methods as they fea-
ture the potential of cracking those conventional, domain-specific and less-open algorithms with
this modern computational paradigm relying mostly on data, rather than less accessible heuristics.
A speech coding system can be formulated by DNN as an autoencoder (AE) with a code layer dis-
cretized by vector quantization (VQ) [12] or bitwise network techniques [13], etc. Many DNN meth-
ods [I4][15] take inputs in time-frequency (T-F) domain from short time Fourier transform (STFT)
or modified discrete cosine transform (MDCT), etc. Recent DNN-based codecs [16][17][I8][19]
model speech signals in time domain directly without T-F transformation. They are referred to
as end-to-end methods, yielding competitive performance compared with current speech coding

standards, such as AMR-WB [20].



However, a straightforward data-driven approach as such, even comparable or superior to those
classical counterparts, may actually be far from realistic to be implemented. The reason is that
these acoustic codecs are usually deployed on low power devices with limited storage and energy
supply, while many of these DNNs achieve competitive performance at the cost of model complexity.
For example, a WaveNet based variational autoencoder [19] outperforms other low bitrate codecs in
the subjective listening test, yet with 20 millions parameters, beyond what a resource-constrained
device can afford for real-time processing.

As an effort to bring deep neural networks closer to low power devices, we study ways to
incorporate conventional digital signal processing (DSP) methods to DNNs. The reason behind
this is simple: DSP methods are efficient and task specific, while DNNs are more general, powerful
and expensive to operate. Using DNN as a platform where DSP methods are well placed to
unload a certain amount of computational overhead can effectively reduce the model complexity
with satisfying performance. The meaning of the study on efficient and scalable neural waveform
codec is two fold: first, it helps to find a better pivot in the performance-complexity tradeoff, such
that future neural codecs may have the potential to be employed in industrial products; second, it
enables the codec to not only operate at relatively low bitrate cases with decent quality, but also
high bitrates with near transparent quality. Overall, it could be seamlessly incorporated with other
artificial intelligence tasks that have already heavily relied on deep neural networks. It is not hard
to underestimate the role DNNs have played in speech enhancement, recognition and diarization,
to name a few, for natural language understanding, where modules are tuned systematically to
maximize the performance. Should the speech/audio codec be implemented as a deterministic
(non-trainable) algorithm purely based on DSP, it is not possible to be collaboratively tuned along
with other neural network components. Therefore, a compact neural waveform codec compatible
to low-power devices is a first step towards future intelligent systems for acoustic signal processing.

In this thesis, we propose a cascaded cross-module residual learning (CMRL) pipeline by en-



abling the conventional multi-staged residual coding concept in deep neural network platform for
speech and audio coding. In addition, we combine linear predictive coding (LPC) with CMRL and
design a collaborative quantization (CQ) scheme where LPC codebook is jointly learned with the
corresponding residual quantization to achieve transparent speech coding with much lower model
complexity. Aside from the model topology, as another training component, the loss function is
critical in supervised learning to navigate the model towards desired behaviors: to that end, we
propose a perceptual loss with psychoacoustic calibration, baking human auditory perception into
the training of a neural network for audio coding.

In the remainder of the introductory chapter, we firstly review the related conventional tech-
niques for speech and audio compression. Decades-old are many conventional codecs, they are by
no means readily to be ditched. In fact, in many rural areas with a relatively limited Internet
bandwidth budget, conventional codecs, due to their runtime efficiency, are still highly needed.
Therefore, hybrid designs are oftentimes found even from recently proposed codecs as a combina-
tion of conventional techniques and contemporary paradigms with deep neural networks. We then
provide an overview of related deep learning methods which are building blocks of the proposed
model in this thesis. More importantly, we motivate the methodology of designing the neural
waveform codec from a cognitive science perspective, by highlighting the role of predictive coding
in lightweight and scalable neural codecs, in addition to how human auditory perception can be
leveraged in neural audio coding. Finally, we summarize the motivation and outline the topic for

each following chapter, respectively.

1.2 Related Acoustic Signal Compression Work

1.2.1 Conventional coding systems

Data compression has been well investigated for decades with a rich literature. Even for audio

coding specifically, it is hard to summarize various techniques comprising a wide range of audio



coding formats, perceptual quality levels, bitrates, bandwidths, etc.
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Figure 1.2: The codec comparison on performance, bitrate, and bandwidth [I]

We introduce three speech/audio codecs which have been compared to our proposed systems,
AMR-WB [20], Opus [21], and MPEG Audio Layer III (MP3) [22]. Adaptive Multi-Rate Wide-
band, abbreviated as AMR-WB, is a patented speech coding standard developed by Nokia and
VoiceAge. It improves the speech quality from its predecessor AMR-NB, due to a wide speech
coding bandwidth of 50-7000 Hz. AMR-WB provides a scalable performance in multiple bitrate
configurations from 6.6 kbps to 23.85 kbps. MP3 is a set of lossy audio coding standards which have
been deployed in multiple industrial products. It can compress the CD quality stereo music from
1.4 Mbps to 128 kbps without perceptual loss of quality. Psychoacoustic models serve a critical
role in the design of MP3. Opus is more recently developed and covers a much wider bitrate range
from 6 kbps to 510 kbps for stereo audio sources. Opus can be used to compress both speech and
audio signals. As shown in Figure the speech quality from Opus at very low bitrate modes is

less competitive.



1.2.2 Neural vocoders

The neural vocoder is not the neural network counterpart for classical signal processing based
codecs, which should actually be neural waveform codec. Neural vocoders are rather decoders that
synthesize the speech only waveform from a few acoustic features, such as mel frequency cepstral
coefficients (MFCC), bark frequency cepstral coefficients (BFCC), the fundamental frequency [23].
Neural vocoders are proposed mainly for text-to-speech (TTS), such as WaveNet [24] which can
synthesize speech signals of good quality but runs slow. To tackle this issue, WaveRNN [25] is
proposed for efficient neural speech synthesis. It only has a single-layer recurrent layer with a dual
softmax layer that folds a long sequence into smaller batches so as to generate multiple samples
per time. Consequently, WaveRNN runs much faster with comparable speech quality. LPCNet is
a variant of WaveRNN by incorporating linear predictive coding (LPC) [5] to sample generation

which operates in real time with a bitrate of only 1.6 kbps [26].

1.2.3 Evaluation metrics
1.2.3.1 Objective measures

In acoustic signal processing, objective measures are highly task specific. For source separation,
BSS_Eval toolbox decomposes an overall source-to-distortion ratio (SDR) to components corre-
sponding to different error types: source-to-interference ratio (SIR), source image-to-spatial dis-
tortion ratio (ISR), and source-to-artifacts ratio (SAR). Short-time objective intelligibility (STOI)
[27] measures objective intelligibility for enhanced signal, which is positively correlated with the
performance of automatic speech recognition (ASR) systems. Speech coding differs from source
separation, or speech enhancement, in that there is no additive interference, and the degradation
is caused by quantization error and artifacts from the codec. To assess the speech quality from a
codec, we typically rely on PESQ (Perceptual Evaluation of Speech Quality) [28]. PESQ), standard-

ized as ITU-T recommendation P.862 (02/01), models mean-opinion-score (MOS) with the range



of 1 (bad) to 5 (excellent). P.862.2 extends PESQ to support the evaluation of wideband telephone

networks and speech codecs up to a sample rate of 16 kHz.

1.2.3.2 Scores from subjective listening tests

Note that the evaluation which is only evidenced by objective measures may not be sufficient to
justify the usage of the model for real-world applications, as the discrepancy between these objective
scores and mean opinion score (the true reflection of human auditory perception) can sometimes be
very noticeable [29]. Therefore, it is highly recommended to report MOS acquired from subjective
listening tests. There are two major caveats when conducting a test as such: first, it is relatively
time consuming to collect MOS; second, the effectiveness of results is less statistically significant if
the amount of subjects is not large enough. With that perspective, industrial research institutes,
such as Google, have their own on-site subjective listening tests platform to invite employees to
input their opinions; other online crowdsourcing platforms, such as Amazon Mechanical Turk, can
also be used to conduct subjective listening tests by enrolling volunteers. Even with this effort,
it may still be a questionable process as a subjective listening test: there is no control on the
capability and level of commitment of human listeners. Comparing and evaluating different coding
systems with very subtle differences can be tedious. As a consequence, subjective listening tests
are expected to be conducted by audio experts (who are trained according to [30] and committed
to taking the tests).

In our research, we collect subjective listening scores based on MUItiple Stimuli with Hidden
Reference and Anchor (MUSHRA) [30] standards. Each MUSHRA test may have several sessions,
one for each bitrate mode. Each session usually includes multiple trials. As indicated by its name,
each trial includes a reference signal, one or two low-pass anchor signals, several enhanced signals
from different coding systems, and a hidden reference, and subjects are then asked to score each

of them based on their perceptual preference. Figure [I.3] shows the interface of a MUSHRA trial.
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Figure 1.3: The interface for a MUSHRA trial
Among eight competing systems, there are

e two anchors that are processed by low-pass filters at 3.5 kHz and 7 kHz, respectively. The

listener is expected to give relatively low scores for anchors;

e one hidden reference which is equivalent to the explicit reference signal on the left, and

the listener should detect it and grade it 100;

e other decoded signals with various degradation levels.

The scores for all trials will be accumulated to calculate the MOS. Typically, MOS can be descrip-
tively represented in a box plot.

Aside from MUSHRA, A/B test is used in ablation analysis where only two competing systems
are involved along with the reference. In A/B test, the listener is asked to select what is more

similar to the reference out of the two decoded signals.



1.3 Related Deep Neural Network Techniques

This section introduces several neural network techniques from non-linear transformation to train-

able quantization, which are building blocks to our proposed systems.

1.3.1 Dilated 1-D convolution

As the input, for end-to-end acoustic signal processing, is the waveform segment, it suffices to use
1-dimension (1-D) convolution. Given the convolution operator denoted as *, the 1-D convolution
evaluated at p on the signal ¢ with the kernel k is formally defined in equation [I.I} where v denotes
the dilation rate with the default value of 1. For instance, if the kernel size is 3, to convolve ¢ by
k at p =0, we calculate i(—1)k(1) +i(0)k(0) + i(1)k(—1). CNNs employ dilated layers to enlarge
the receptive field, aggregating contextual information without increasing the kernel size [31].

(i, k)(p) = Y i(s)k(t) (1.1)

s+vyt=p
1.3.1.1 Residual learning blocks

Residual learning is arguably one of the most well known techniques to reduce model complexity
and facilitate the optimization of very deep DNN models. As more layers are added, the model
capacity increases. However, it poses a challenge to training a gigantic network, especially due to
the gradient vanishing issue [32]. The core idea of residual learning is to add identical shortcuts
(Figure (b)), such that the layers within a residual learning block will only need to learn the
difference (or residual) between the input and output of the block.

It is critical to make residual learning building blocks efficient, as they are repeatedly used in

various advanced CNN architectures. Bottleneck residual learning blocks [33] usually replace [g: (65?1]

9, 20
type of kernel setting (Figure (b)) to [513 12000] (Figure (c)). Note that not only the amount

of parameters for each block is reduced via the bottleneck design, the dimension of the feature map

is increased (from 64 to 100), which is usually found to benefit the overall performance.
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Figure 1.4: CNN building blocks

As a variation of the bottleneck block, gated linear unit ([34]) is propo