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Robert David Badger

OPEN-SOURCE CLASSIFICATION SYSTEMS FOR FREQUENCY-DOMAIN RF SIGNALS:

ROBUST PHYSICAL LAYER MULTI-SAMPLE RATE PROCESSING

Digital signal processing (DSP) is widely used for digitized communication data and statistical

signal processing (SSP) techniques are often applied to stochastic communication processes. DSP

and SSP methods are also routinely used for modern radio frequency (RF) communication data

equipment but hardware is unable to make intelligent processing decisions required for modern

communication systems and data. The next evolvement of RF processing is intelligent signal

processing (ISP), in which data uses machine learning (ML) models to provide superior processing

benefits over standalone DSP and SSP systems. In this dissertation, informatics techniques are

investigated to process software defined radio (SDR) open-source RF data sets in the frequency

domain through the use of the singular value decomposition (SVD) algorithm. This algorithm

reduces the dimension of the time-frequency representation of the IQ samples, forming a low-rank

approximation of the original, that is then converted back to an RF data signal that properly

activates a matched transceiver. This leads to a novel frequency domain approach that facilitates

ISP to classify RF signals. The experimental results show that using all of the frequency domain

data can achieve better performance than a frequency domain magnitude-only approach.

Additional open-source RF datasets collected at various sample rates expanded RF classification

across multiple frequency bandwidths. Next, multiple sample rate datasets are collected from

multiple SDR hardware to classify waveforms from additional sample rates. Additionally, the

usable RF spectrum can be dense with signals, and I demonstrate how multiple waveforms

operating in a single RF sample can be properly classified. Finally, I investigate how multiple

types of SDR hardware may be necessary to overcome phase noise differences that affect model

efficacy.
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Chapter 1

Introduction

The radio frequency (RF) spectrum is a subset of the electromagnetic spectrum and spans ap-

proximately 30 kHz to 300GHz. Communication within the RF spectrum consists of hundreds of

variations of modulations (analog and digital) and channel bandwidths. RF channel bandwidths

range from 3 kHz for narrow frequency modulation (FM) analog waveforms to hundreds of MHz

for fifth generation (5G) cellular networks. These large differences in operating frequencies and

bandwidths illustrate a diverse domain that is complicated to operate in and manage.

The RF spectrum is predominately managed through the use of specific allocation bands [1].

This methodology provides spectrum housekeeping for many types of RF transmissions, including

cellular networks, television stations, radar, and military operating bands, but does not address

many of the RF traffic issues in the industrial, scientific, and medical (ISM) bands [2] and dynamic

spectrum sharing bands (DSS) [3]. ISM bands are the de facto operating bands for multitudes

of new RF equipment, including internet-of-things devices, drones, and wireless communication

networks (Wi-Fi) that vie for spectrum access. Since ISM bands do not require a government

license to operate in, any transmission equipment operating in these bands is required to endure

interference from other waveforms. Additionally, there are no regulatory protection from other

transmitters operating in the same bands.

In addition to ISM bands, DSS allocation bands require cognitive radio to streamline traffic.

DSS bands are currently facilitating mobile network operators to roll out new radio services [4]

with cognitive radio playing an important role [5] [6], while other DSS allocation bands are shared

by multi-tiered users, such as [7] [8]. The “Wild West” of ISM bands and DSS bands are chaotic

without assistance from cognitive radio and results in substantial co-channel RF interference.

In this chapter, I introduce an intelligent system processing (ISP) system that helps optimize
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band usage, reduce co-channel interference, and promotes additional clear channel RF “real estate”

for devices seeking spectrum access.

1.1 Digital signal processing (DSP) and statistical signal processing (SSP)

RF transceivers depend on DSP and SSP methods to process RF data in modern communications

systems. These methods provide a traditional approach to some data processing tasks, including

robust noise mitigation. Analog RF processing can consist of purpose-built integrated circuits that

perform functions such as filtering and amplification on streamed RF signals directly from the initial

RF chain (e.g., antennas, RF mixers), or circuits constructed from discrete components. As RF

transceiver equipment historically advanced to the utilization of analog to digital converters (ADC)

and digital to analog converters (DAC), DSP hardware performed the RF processing functions

digitally.

1.2 Constellation diagrams

In RF digital modulation, constellation diagrams are often used to depict data symbols in the

xy-plane. By custom, the x-axis is the real or in-phase plane and the y-axis is the imaginary or

quadrature plane. The constellation symbols are populated to this plane via plotting magnitude

and phase. Together, the in-phase and quadrature (IQ) plane can depict data from RF samples

that produce a scatter plot. Constellation diagrams are an invaluable tool that provides insight

into RF data symbol locations within the “constellation”.

Fig. 1.1 depicts two 16 quadrature amplitude modulation (QAM) RF waveform constellations:

In fig. 1.1(a), the QAM scheme uses 16 symbols which are arranged around the origin of the

IQ-plane. Each constellation point represents 4 bits and is arranged using gray code [9]. RF

constellations can have many symbols (e.g., 5G carriers can use quadrature phase shift keying

(QPSK), 16QAM, 64QAM or 256QAM) and geometry. Ideally, a constellation can have infinite
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Figure 1.1: 16QAM constellations

symbols, because data points are infinitesimally small within the constellation. In reality, there

are many constraints that limit the number of data symbols within a given RF constellation. For

example, Fig. 1.1(b) illustrates various sources of noise causing constellation symbol locations to

expand and overlap with neighboring symbols. This can cause errors when a symbol is misidentified

during demodulation.

1.3 DSP and SSP implementation

SSP methods take advantage of stochastic processes in the RF data streams and can be used to

help correctly determine digital encoded data that may be difficult to determine due to noise and

channel impairments (e.g., direct current (DC) impairments, IQ imbalance, phase mismatch from

local oscillators). As errors increase, the error vector magnitude between the ideal symbol location

and actual location becomes greater. SSP uses statistics from the data to help determine a samples

most probable digital symbol. Additionally, DSP and SSP techniques can be substantiated into

software via software defined radios (SDRs), this provides increased flexibility over hardware only

solutions.
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1.4 Intelligent signal processing (ISP)

In this dissertation, I propose an ISP system that will help optimize band usage, reduce co-channel

interference, and promote additional clear channel RF “real estate” for devices seeking spectrum

access. DSP and SSP methods are often used in conjunction to process data in modern communi-

cations systems, but they do not learn from data to provide insightful decisions. ISP enabled RF

hardware can determine parametrics from live emitters currently operating in channels of interest.

These learned parameters can then be used to re-optimize transceiver functions before accessing

the spectrum. An ISP data driven approach will augment and provide significant improvement to

current DSP and SSP capabilities.

Together, this “family” of signal processing techniques will fundamentally change the way hard-

ware interacts with the spectrum. However, in order to harness ISP for use in the RF domain, I first

consider how to best analyze RF IQ data and transform that data to a domain where informatics

techniques will be used to uniquely process IQ data.
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Chapter 2

IQ data Singular Value Decomposition (SVD)

This chapter contains material that was published in the 29th European Signal Processing Confer-

ence [10]

2.1 Introduction

In this chapter, I will show how to transform the RF data to a domain where informatics ap-

proaches are used to manipulate the waveforms. This is key for all subsequent chapters and lays

the foundation for how I provide robust RF frequency domain classification.

Monitoring and collecting Radio Frequency (RF) data is an important part of spectrum man-

agement as RF electromagnetic waves permeate almost every facet of our lives. Cellular telephones,

the internet, radio stations, satellites, and garage door openers will all access the RF spectrum, at

some point, to transmit and receive information.

The software defined radio (SDR) [11] [12] [13] [14] is often used to collect RF data; it provides

a standardized method for RF data collection that will facilitate ISP use. SDR receivers range

from as little as twenty dollars (U.S.) to thousands of dollars, thereby providing ample price entry

points suitable for many RF applications. RF data is sampled in the time domain, and the rate at

which spectrum samples are collected is often adjusted by the user.

SDRs are widely used to collect RF signals, real-time spectrum monitoring, and as a software

transceivers for RF communication. SDR hardware is simplified compared to specific application

transceivers because SDR hardware usually only samples the spectrum or transmits IQ formatted

data, typically without any additional hardware processing. The IQ stream is transferred to a host

computer where software can store the IQ data or function as a transceiver for signal processing

[15][16].

5



Existing methods for IQ compression are primarily used within RF communication equipment

that is transferring the IQ data on internal buses. This type of IQ compression reduces bus

bandwidth requirements through decimation/down-sampling, and is often in the time domain with a

typical compression of four [17]. This is different from research presented here in that my proposed

compression method is defined in the frequency domain and works in an offline manner, thus

resulting in a significantly greater compression ratio.

My methods works on the time-frequency (TF) representation of an originally IQ formatted RF

data. For a given discrete-time waveform signal,

x(n) = sin(2πfn+ ϕ(n)), (2.1)

where f , n and ϕ(n) are for the frequency and time indices, and time-varying phase shifts, respec-

tively. Then, trigonometry can represent (2.1) as the sum of the orthogonal components:

In-Phase i(n) = sin(2πfn) cos(ϕ(n)) (2.2)

Quadrature q(n) = sin
(
2πfn+

π

2

)
sin(ϕ(n)). (2.3)

While collecting and archiving RF data have many uses, IQ samples can generate very large

files, depending on bandwidth and duration of collection. For example, IQ sample files can range

from 40MB at 1 mega samples per second (msps) to over 1GB at 25msps for each collect of five

seconds.

My goal is to compress this kind of data without loss of critical information to actuate the

matched receiver. One way to achieve the reduction of data rate is to quantize the signal using a

low bit-depth. In [18], the TF domain is sub-divided into multiple groups of subbands and quantized

separately. Coupled with a thresholding technique that suppresses lower magnitudes, this method

achieves a reasonable compression ratio. However, my proposed low-rank approximation-based

6



approach is orthogonal to the quantization mechanism, making the two approaches complementary

to each other.

Meanwhile, in [19], robust principal component analysis (RPCA) is used to remove unwanted

interference from the RF signal in the TF domain. Given that RPCA is based on the low-rank

approximation of the signals, this approach shares the same philosophical approach as mine. How-

ever, its experimental design is focused on interference suppression than compression performance.

My work presents a singular vector decomposition (SVD)-based algorithm [20] to substitute the

time-frequency representation of the IQ data with a low-rank approximation. I also present the

compression performance on various analog and digital RF signals.

Additionally, I investigate the use of graphics processing units (GPU) for the time-frequency

transformation and SVD implementations to see if parallel processing can expedite those processes.

The SVD algorithm is fully supported in PyTorch version 1.6 to assist with this effort.

There are two different cases of reconstructed IQ data to consider: the analog and digital

cases. First, if reconstruction can actuate the matched analog push-to-talk (PTT) receiver without

any perceivable degradation in speech quality, it will be considered a good reconstruction, and

vice versa. I will discuss more about the subjectivity of speech quality measurements in Section

2.8. The second case is within digital transceivers, where the bit error rate (BER) can monitor

the reconstruction efficacy. However, the procedure proposed by Mitra [21] is not feasible for us

due to the lack of knowledge with respect to the transceiver’s physical layer architecture, schematic

diagram of signal path, and equipment to measure BER. Instead, I assume that if the reconstructed

signal can reliably actuate the matched transceiver with a high probability, the internal BER at

the receiver must be lower than maximum allowable value. Further empirical measures of the

reconstructed IQ signals are discussed in Section 2.7.

I claim that this work is the first attempt to compress RF signals using the well-defined low-rank

approximation concept, achieving a sensible compression ratio to the best of my knowledge. The
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lack of a compression method in the literature may be due to the communication-oriented nature

of the RF signal processing domain, in which RF signals are not considered as stored data to be

compressed, although I have been motivated by this problem for informatics exploration purposes.

While SVD itself has been widely studied in the literature, I fully utilize it in the time-frequency

domain. Eventually, one can control the trade-off between the compression ratio and reconstruction

quality based on the orthogonality of SVD.

2.2 Background

I convert the IQ data into the time-frequency domain with a short-time Fourier transform (STFT)

function [22]. The discrete STFT of a discrete time signal x(n) with a symmetric, typically bell-

shaped window function ω(t) of length H (i.e., the number of consecutive non-zero elements) is

defined as:

STFT{x(n)}(f, t) ≡ Xf,t =

∞∑
n=−∞

x(n)ω(n− tR)e−j2πfn, (2.4)

where t and R denote the frame index and hop size, respectively. STFT results in a complex

matrix X. I expand this operation to both I and Q channels, to convert the time-domain signals

i(n) and q(n) into I and Q ∈ CF×T , where F and T are the number of frequency subbands and

frames, respectively. The size of this complex matrix is defined by the bandwidth of the signal as

well as the frame rate, i.e., the hop size between the windowed frames, which I set to be 50% of

the frame size. Inverse of the STFT (iSTFT) is defined by applying inverse DFT to each spectrum

X:,t, which recovers the windowed time domain signal x(n)ω(n− tR). An overlap-and-add process

follows to recover the original x(n) based on the constant overlap-and-add property of the window

function.

Meanwhile, SVD factorizes a given matrix A ∈ RM×N into three factor matrices, A = UΣV ⊤,

where U and V hold orthonormal basis vectors whose significance is represented by the correspond-

8



ing singular values, stored in the diagonal matrix Σ. SVD has been used for compressing images

for over forty years [23, 24]. The compression relies on the assumption that the rank K of the input

matrix A is lower than its dimensions, i.e., K < M,N , which is defined as the number of non-zero

singular values. In practice, as I do not know the exact rank due to the noisy nature of the data,

one can choose a reasonable rank L < M,N with a risk of reconstructing a rank-deficient version

of the input:

A = UΣV ⊤ ≈ Â(L) =

L∑
k=1

U:,kΣk,kV
⊤
:,k. (2.5)

These applications are similar to my approach in the sense that STFT converts the IQ stream

into arrays. For example, by taking the magnitude of the STFT, I can visualize the TF represen-

tation as an image as shown in the figures in this paper. However, my method applies SVD to all

real and imaginary coefficients instead of the magnitudes, in order to re-constitute them into IQ

data without losing the phase information.

2.3 Data Preparation: SDR and SigMF

SDR hardware:

The basic SDR hardware is depicted in Fig. 2.1. This type of receiver is called a direct

conversion receiver because it does not have an intermediate frequency. The RF signal is input to

both mixers; the top path is mixed with the local oscillator as is the bottom path. However, the

bottom path mixes the RF signal with a phase shift to the local oscillator. After the mixers, both

paths go through further filtering, resulting in I and Q data streams. Down stream of the low pass

filters, the IQ paths are sampled and digitized.

The sample rate of an SDR is customarily expressed in mega samples per second (msps), i.e.,

106 samples per second ≡ 1msps. This also defines the frequency bandwidth (e.g., 1msps provides

1MHz of bandwidth, 25msps provides 25MHz of bandwidth due to SDR design, and allows for

9



Figure 2.1: Basic SDR quadrature receiver

narrow and wide swaths of spectrum to be sampled through changing the local oscillator clock rate,

decimation factor, and filtering.

Primarily three SDRs were used throughout this research and are depicted in Fig. 2.2.

GNU Radio (gnuradio) [25] is an open-source software library that provides a graphical envi-

ronment for creating RF signal processing blocks to build RF “hardware” in software. This software

is then used to control a SDR to operate in the RF spectrum.

This work extensively uses gnuradio to collect RF waveforms for analysis and transformation.

Within gnuradio, an additional out-of-tree (OOT) module is used during signal collection. This

module facilitates the collection of IQ data as well as labeled metadata in the format compatible to

SigMF [26] [27] [28]. All data in this chapter is collected at the sampling rate of 1msps producing

a bandwidth of 1MHz. The signal duration is 5 seconds for the results section 2.6, 2.7, and 2.9

and 15 seconds for the efficacy calculations section 2.8.

The transceivers operate at or around the 433MHz, ISM band. IQ data is recorded using an

Ettus N210 SDR with SBX daughter board. Data is transferred over-the-wire between the SDR

and CPU as a complex 16-bit integer [29]. The CPU converts the integer data to 32-bit float for

use in gnuradio applications.

10



Figure 2.2: SDR hardware

Figure 2.3: The closed loop coaxial setup.

Two methods are used to connect the transmitted waveform to the matched receiver: closed-loop

and OTA. The former setup minimizes interference from outside sources. OTA, on the other hand,

relies on the antennas, leading to a higher probability of signals of non-interest getting recorded.

Closed loop setup: The closed loop setup connects the Tx directly to the Rx through a coaxial

network. The basic closed loop and OTA configuration consists of a high powered 30 dB attenuator

inserted from the Tx output, in-line with an 8MHz band-pass filter centered at 433MHz. It

is followed by a Mini-Circuits’ VLM-33-2W+ coaxial RF limiter to protect the programmable

attenuator and SDR from high-powered signals. The final component before the input to the

programmable attenuator is a Mini-Circuits’ BLK89-S+ DC-Block, to prevent DC power getting

11



Figure 2.4: Over the air coaxial setup

into the front end of the attenuator and SDR. All transmitters are properly attenuated to ensure

high signal-to-noise ratio (SNR) at the receiver, while also ensuring recorded signals stayed in the

linear region of the receiver. Fig. 2.3 depicts a simplified schematic of the RF hardware setup for

closed loop collection.

OTA setup: OTA collection was performed for transceivers that do not have a removable an-

tenna or are not easily configurable for closed-loop setup. Fig. 2.4 illustrates a simplified schematic

of the OTA setup. The primary difference between the two configurations is the use of antennas

for waveform propagation. The OTA method featured Tx and Rx antennas that are optimized

for the operating frequencies. The physical distance between the Tx and the Rx antennas was 2λ

(λ = wavelength) or more to ensure the Rx is in the far field when recording IQ signals. An 8MHz

bandpass filter is also applied to minimize extraneous signals.

SDR transmission: Transmitting a recorded IQ file via SDR will actuate a matched receiver,

as if it had been sent by the original transmitter with minimal added artifacts. However, I feed

the IQ data to my compression and decompression pipeline, i.e., STFT—low rank SVD—iSTFT,

which replaces the original IQ data with a low rank approximation. The SVD is performed on

a computer using the saved IQ data, then a new IQ file is reconstructed from the reduced rank

matrix. Fig. 2.4 depicts the typical transceiver to SDR setup. When recording IQ files, the path is

from the transceiver to the SDR. After reconstructing a waveform, the transmission path is from

the SDR to the transceiver.
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Figure 2.5: The reconstruction percent error by varying choices of L.
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Figure 2.6: The speech intelligibility potential of the low rank approximation.

The author made the IQ datasets and the Python code used to analyze the data publicly

available1.

2.4 STFT and SVD for Compression

An EVGA® GTX1080Ti (3584 NVIDIA® CUDA® cores) GPU with PyTorch 1.6 is used to

perform the STFT and iSTFT algorithms (torch.stft and torch.istft). While CPU imple-

mentations are also an option, both algorithms are, on average, 12.5 times faster on the GPU.

1https://saige.sice.indiana.edu/research-projects/rf-svd
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Table 2.1: The rank values that meets certain percent error thresholds, 5% and 1% error.

Rank (Percent Error) L (< 5%) L (< 1%)

PTT 7 (4.13%) 14 (0.78%)
TYT® 7 (4.82%) 11 (0.80%)
Vodeson 9 (3.90%) 15 (0.84%)
Click ’n Dig® 7 (4.23%) 15 (0.95%)
YSF 2 (4.86%) 10 (0.79%)
LoRaTM 19 (4.83%) 104 (0.99%)

STFT and iSTFT uses a frame size of 1024 samples and a 50% of overlap. Each frame is windowed

by a Hann window of the same size. The frequency dimension is F = 513 (due to the complex

conjugacy, I discard about half of the frequency dimensions), resulting in the frequency resolution

at 976.56Hz. This granularity is chosen due to the amount of GPU memory required to perform

matrix operations, while it was sufficient to activate matched receivers during the low rank SVD

reconstitution. The number of frames T varies depending on the length of the signal. I apply

STFT to each of the I and Q channels, respectively, which results in four real-valued spectrograms,

I(Real), I(Imag), Q(Real), and Q(Imag):

STFT{i(n)} ≡ I(Real) + jI(Imag) (2.6)

STFT{q(n)} ≡ Q(Real) + jQ(Imag) (2.7)

PyTorch implementation of the SVD algorithm is applied to each of the four spectrograms,

respectively. As my compression ratio depends on the choice of rank L, I perform a simple test to

choose a small enough, but working value. SVD is then performed on select recorded IQ waveforms

and all selected IQ files are verified to properly actuate the associated receiver using SDR IQ

playback. After factorization occurs, each waveform is reconstructed with a varying amount of

singular vectors L. Once the waveform is reconstructed via iSTFT, it is re-transmitted OTA and

tested to see if the matched receiver could successfully demodulate the reconstructed signal. Fig.
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2.5 depicts the relationship between the chosen rank L and the Euclidean norm ratio in per cent

error, E(L) =
(∑

f,t

(
Aft − Â

(L)
ft

)2)1/2/(∑
f,tA

2
ft

)1/2
.

2.5 Experimental Results

My experiments are designed to empirically verify that the proposed low-rank approximation can

actuate the receiver with a significantly lower amount of bits. However, note that its data-driven

nature limits my ability to prove the performance guarantee. My fundamental assumption is that

the rank of the RF signals’ time-frequency representation may be lower than their actual dimensions

as in many other signal domains (e.g., audio and video), while the actual working rank can be found

only empirically. My SVD-based approach supports this search, as SVD’s orthogonality lets the user

incrementally add additional latent variables until a successful reconstruction quality is achieved

(the “elbow” method shown in Fig. 2.5).

2.6 Analog waveforms: PTT radio

The Baofeng UV5R analog PTT radios use frequency modulation (FM) and are relatively easy

to reproduce from a low rank approximation due to receiver design. Simply presenting enough

in-channel energy to break squelch, the analog receiver chain attempts to demodulate the signal.

L=3 is the minimum rank to actuate the PTT receiver and be intelligible, while it introduces

noticeable audio artifact. With four vectors, the sound quality is perceptually indistinguishable

from the uncompressed original. Corresponding ranks for 5% and 1% errors are L = 6 and L = 15,

respectively. Fig. 2.7 zooms into the details of spectral changes as L increases. Note that figures

2.7 and 2.8 are frequency components in the Y-axis, as FFT bins. I can see that the full rank

approximation recovers most of the details, while L = 15 also captures an important structure. A

more detailed analysis on the audio quality is discussed in Section 2.8.
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Figure 2.7: The reconstructed PTT spectrograms with varying ranks.
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Figure 2.8: The reconstructed LoRaTM spectrograms with varying ranks.
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2.7 Digital waveforms

Five different transceiver models are investigated for the digital setup:

• TYT® DMR radio: A digital mobile radio (DMR) that uses four-frequency shift keying (4FSK)

modulation and time division multiple access channels.

• Vodeson HD03 Doorbell: Operates in the 434, MHz band.

• Click ’n Dig® D2 FOB: Operates in the 434, MHz band.

• Yaesu System Fusion (YSF) C4FM: YSF has four modes of operation, one analog and three

digital C4FM modes. The results published here are the voice full-rate mode [30]. In this mode

the entire 12.5 kHz bandwidth is used.

• LoRaTM FMCW or CSS: It is a frequency modulated continuous wave (FMCW) / chirp spread

spectrum (CSS) waveform [31]. The tested configuration for LoRaTM is a HopeRF RFM98 module

[32] with a spreading factor of 9 and bandwidth of 125 kHz.

In Fig. 2.5 and Table 2.1 I can see that significantly small values for L, less than 10 most of

the time, can recover 95%of the original matrix in terms of the Euclidean norm ratio. For a higher

reconstruction quality of 99%, more ranks are required, but most of the time this does not exceed

15. Meanwhile, LoRaTM is the most difficult case that requires substantially higher ranks, which

is due to the granularity needed for the receiver to discern where the CSS begins and ends in the

time-frequency domain shown in Fig. 2.8.

A significant difference that distinguishes digital modulation from analog (i.e., PTT transceivers)

is that analog receivers will generally break squelch and activate the receiver; if the signal has enough

of the proper modulation characteristics, then poor to excellent communication can be achieved.

On the other hand, in order to activate digital receivers, enough packets or symbols have to be

received and properly demodulated. This means that the actuation of receivers can indirectly de-
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termine the quality of the reconstruction, which is generally the case for all digital modulation

experiments. All modulations were initiated with a small L; the minimum is reported in Table 2.2.

2.8 Signal reconstruction efficacy for voice communication

I employ short-time objective intelligibility (STOI) measures [33] to empirically determine the

quality of received IQ voice transmissions for select analog and digital PTT waveforms. A ten second

voice file from the LibriSpeech corpus [34] is played from a speaker, which the Tx unit captures.

The RF waveform is captured using the OTA setup depicted in Fig. 2.4. After performing SVD,

the recovered IQ signal is transmitted to the original receiver, which extracts the speech signal and

plays it using its own speaker.

The audio recording process creates some additional artifact, which I minimize by keeping the

microphone and PTT speaker’s physical orientation constant. The received signal is temporally

aligned to the playback of the Rx that did not go through the compression process, by using

their cross-correlation. The STOI measurements in Fig. 2.6 for the Baofeng UV5R analog PTT

transceiver coincides with listening to the audio signals: after about five vectors, it is hard to

hear an increase in audio quality. The digital TYT® MD-380 DMR waveform is reconstituted and

triggers the matched receiver with as few as five vectors. The sound quality is digitally clear and no

improvement was audible as L increased, which explains the STOI values that saturate at L = 5.

2.9 Compression Analysis

Actual compression ratios are calculated based on original IQ data size divided by the sum of the

saved arrays’ file size. For a given windowed frame of size H, FFT gives 2H real and imaginary

coefficients; half of them will be kept due to the complex conjugacy. Since the 50% overlap doubles

the frame rate, STFT ends up with twice more coefficients, i.e., FT = 2J for a signal with J

samples. Meanwhile, when L < F, T , the compression ratio is (FT/2)/(FL+ L+ LT ), which is in
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the order of O
(
(FT )/(F + T )

)
when L ≪ F, T .

Table 2.2: Compression analysis. Minimum L indicates the minimum rank required to actuate the
receiver.

Modulation Compression Ratio Actual L Minimum L

PTT 24.57 10 2
TYT® 24.27 10 5
Vodeson 121.01 2 2
Click ’n Dig® 34.69 7 7
YSF 40.48 6 6
LoRaTM 8.64 28 28

2.10 SVD summary

In this chapter, electromagnetic waves are sampled with SDRs. The SVD algorithm is successfully

employed to reduce the vectors necessary to re-constitute, transmit, and activate the matched

receiver. This reduces the required vectors down to 0.2 − 2.8 percent of the original vectors, and

provides data compression ratios from about 8.64 to 121. The compression ratios significantly

reduce storage and handling of RF IQ data. Finally, I determined a way to transform RF IQ data

via STFT into four channels. These four IQ STFT channels are key for TF RF domain classification

in subsequent chapters.
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Chapter 3

TF domain RF classification: Single sample rate/single SDR

This chapter contains material that was published in the 29th European Signal Processing Confer-

ence [35]

In this chapter I analyze how to perform RF frequency domain classification using all the

information from the STFT, and I compare the efficacy of my proposed method versus classification

models that only use “spectrograms” or the IQ data magnitude.

There are primarily two sources of RF signal data for machine learning: spectrum sampling from

commercial-off-the-shelf (COTS) transceivers via SDRs [36][12][13] or software-generated synthetic

datasets. The synthetically generated IQ data can either be augmented and used to train NN

models or streamed to a SDR that transmits the data into the RF spectrum–either OTA or closed-

loop–and then sampled by a receiver SDR into IQ data and stored. The latter approach can add

additional augmentation to the IQ data that may not be easily artificially performed.

I open-source my project, which includes all the training and testing datasets and the source

codes. Moreover, I also provide a graphical user interface (GUI) that researchers can easily utilize

to build their own labeled datasets1.

3.1 Introduction

ISP waveform classification can help optimize transceiver spectrum operating specifications. One

of the primary spectrum challenges is co-channel interference. This occurs when more than one

waveform is occupying the same channel in a given period of time. This can result in degradation

of channel quality and adversely effect data throughput. Many modern waveforms that operate in

common shared frequency bands can mitigate interference with orthogonal coding and frequency

1https://saige.sice.indiana.edu/research-projects/rf-classification
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hopping schemes. However, many legacy waveforms do not use this methodology to decrease co-

channel interference and are subject to channel degradation. Cognitive spectrum awareness, in

part, through waveform classification can help mitigate this problem.

RF transceiver equipment depend on DSP and SSP methods to process RF data in modern

communications systems. These methods provide invaluable signal processing, including robust

noise mitigation. However, these processing methodologies do not provide for systems to learn

from the data within their domain and make intelligent decisions that can allow a transceiver

to modify its primary operating parameters. The optimization and orderly use of the ISM and

DSS [37] [38] bands are critical for RF domain access expansion and will promote full spectrum

utilization.

3.2 Motivation

In this chapter, I develop a machine learning-based data-driven ISP system. ISP is a critical en-

abling technology for the RF domain that will fundamentally change the way transceivers access

the RF spectrum. First, ISP enabled transceivers can classify the waveforms operating within their

spectrum band and then determine what waveforms may have a higher tiered priority access to the

band [7] [8]. Additionally, data-driven decisions could help determine unoccupied RF channels to

operate in and also perform more complicated decisions, such as determining an optimal modula-

tion, bandwidth, and adjust data rate for optimized transceiver operation. Waveform classification,

transceiver fingerprinting [39] [40] [41], radar object detection and classification [42], in conjunction

with traditional DSP and SSP functions are all capabilities benefiting from a data driven RF pro-

cessing approach. As a result, my proposed RF classification pipeline could provide ISP enabled

transceivers the ability to mitigate problems associated with operating in ISM and DSS allocation

bands and promote streamlined traffic flow.

The RF spectrum is finite and novel management techniques are beginning to be employed to
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optimize spectrum access. For example, in the 3.5GHz U.S. band, prioritized spectrum sharing

was adopted in 2017. This 3.5GHz band has been designated as a dynamic protection area. This

band uses DSS to increase spectrum access by utilizing a multi-tiered user approach. Hardware

dynamically adapts to users accessing the spectrum [43] based on a three tier level protocol. Trans-

mitting in these bands requires hardware that is cognitive and able to discern which frequencies

that higher priority waveforms are occupying then find an appropriate free channel for transceiver

operation.

RF classification could also be key in helping optimize these types of operating bands, as well

as traditional ISM bands, where transmitted waveforms can be co-channel without the operator’s

cognizance. To understand how RF classification can help optimize the RF spectrum, let’s use some

examples. In amateur radio [44], operators are taught to use radio “etiquette” and obey specific

operating rules. Rules regulating operating frequencies, transmit power, and modulation are some

of the basics. Radio etiquette includes not transmitting on a frequency if someone else is actively

transmitting, knowing when it is acceptable to “break” into a channel to talk, and making sure

transmit power is limited to only what is needed for a good communication signal. Another analogy

to consider would be automotive traffic; on a busy city street, traffic lights help keep traffic flow

regulated and help minimize accidents. Additionally, drivers know that when they hear a siren and

see emergency vehicles, that they are to pull over to allow the emergency vehicles to pass safely.

ML enabled cognitive transceivers could determine unoccupied frequencies, higher priority wave-

forms by their classification, and hopping waveforms. Knowledge of spectrum traffic conditions

could allow the cognitive transceiver to modify transmit power, operating frequency, bandwidth,

modulation, data rate, and determine open channels for using an appropriate hopping waveform.
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3.2.1 Time division multiple access (TDMA) example

To illustrate optimizing spectrum occupancy through an ISP enabled system, consider a time

division multiple access (TDMA) frequency hopping waveform in an ISM band. In this TDMA

example, the incumbent waveform meets dwell requirements and provides robust noise mitigation

for itself, but it is not using all available time slots. Now consider a new transceiver preparing

to enter the spectrum that needs to operate in or around the incumbent waveform. I envision

an ISP-enabled device that would classify the incumbent waveforms, determine the approximate

operating frequency (i.e., within resolution of fast Fourier transform (FFT) [45] [46] bin), as well

as the temporal parameters of the incumbent frequency hop. Knowing the frequency, dwell time,

and hop sequence, the ISP-enabled system could recommend several courses of action in order to

avoid co-channel interference, e.g., by using a different hop sequence to avoid interference in time

or by choosing a different set of channels to avoid interference in frequency. These are only a few

examples of potential decisions that could be made possible due to ISP spectrum cognizance.

3.3 RF Domain

Consider the seven level Open Systems Interconnection (OSI) concept model in Fig. 3.2 [47]. Each

transmitter/receiver (Tx/Rx) contains seven levels, with the physical layer being the lowest level

where RF waveforms are transmitting or receiving OTA. Most OSI levels could be used to perform

ML on data to provide useful data analytics. However, In OSI levels two through seven, data would

need to be collected within the targeted receiver hardware or by using another receiver that has

knowledge of the OSI details of the intended receiver. My research focuses on level one (RF physical

layer) of the OSI model to perform waveform classification. This could be efforted without any a

priori knowledge of higher OSI hardware level information and can be used with many properly

configured SDR as the receiver.

Before physical layer waveform transmission, many modern cellular and wireless network proto-
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Figure 3.1: Drone TDMA waveform

Figure 3.2: Seven layer OSI model
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cols (e.g., Wi-Fi IEEE 802.11, wideband code division multiple access (W-CDMA)) typically include

additional processes after packaging data into symbols, but before final transmission. Widely used

encoding techniques include direct-sequence spread spectrum, and frequency-hopping spread spec-

trum. These encoding schemes reduce the effects of channel impairments (e.g., multi-path, channel

fading) and provide processing gain.

This encoding makes it difficult to determine the underlying type of digital encoding scheme

for physical layer classification (e.g., QAM, QPSK). For example, A priori knowledge of the pseudo

noise code would be needed for despreading a spread spectrum waveform, along with synchroniza-

tion. However, the general type of waveform can be classified at the physical layer (e.g., W-CDMA,

long-term evolution (LTE), global system for mobile communications (GSM).

An alternative to direct-sequence spread spectrum and frequency-hopping spread spectrum

techniques is orthogonal frequency-division multiplexing. In this method of encoding, the data

stream is divided in to many sub-carriers that then use standard modulation schemes, such as

QAM or QPSK. The specific sub-carriers modulation scheme could be classified at the physical

layer but may require knowledge of a number of additional parameters to separate and classify

the orthogonal channels from one another. Therefore, because my classification system is at the

physical layer, classified waveforms are limited to what can be learned from a waveform’s spectral

properties, and are not necessarily able to determine an underlying modulation if spread spectrum

techniques are employed. However, the overall classification of the waveform (i.e., W-CDMA, LTE,

GSM, etc.) can be determined.

IQ data is natively sampled in the time domain, but it can be transformed to other domains for

classification. In addition to the time domain, frequency and cyclostationary domains are utilized,

and IQ data can be plotted to create IQ constellation signatures [48]) that can be used classify

waveforms. Many of these methods assume no physical layer encoding scheme (e.g., direct-sequence

spread spectrum, and frequency-hopping spread spectrum) and use artificially derived datasets to
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train ML models for modulation classification.

SDRs sample and quantize the analog RF spectrum data into IQ time domain data. Similarly,

synthetically derived data is generated and saved in IQ format or transmitted over-the-air (OTA),

using SDRs, then saved at the receiver side via SDR. However, before the IQ data is used in a

machine learning model, such as a CNN, the data domain should be considered. Classification of

IQ data can be accomplished in multiple domains, and it is useful to consider the alternatives.

Time Domain: Because IQ data is in the time domain, it does not allow expert features to

be easily extracted, which is a significant benefit when it comes to heuristic features. However, the

sampled IQ training data must be clear of other signals, for which an end-to-end neural network

can perform feature learning and classification holistically at the cost of learning features only from

the data. Meanwhile, the sampled bandwidth will also fix the classification bandwidth. The center

operating frequency of the SDR would be the only insight into the approximate frequency band

the classified waveforms are occupying, without further processing.

Frequency Domain: To convert the IQ data to the frequency domain requires a discrete

Fourier transform (DFT) or STFT to capture the temporal dynamics of the signal over time. The

magnitude of the IQ spectrogram is often used in frequency domain classifiers for training [43, 49].

This method works well with many waveforms, but the magnitude of the STFT will forfeit any

phase information in the waveform that may be useful for classification. I propose to use the 3D

tensor representation to encompass all the details of the IQ data in the time-frequency space as an

input to the CNN classifiers (Section 3.5).

Other Domains: Other domains are also used for RF classification. For example, image

processing on the IQ data from plotting the IQ constellation data[50]. Waveforms that have clear

constellation signatures [48] are good candidates for this domain (e.g., quadrature phase shift keying

(QPSK), quadrature amplitude modulation (QAM)).

Additionally, The Wigner-Ville, Choi-Williams, Quadrature Mirror Filter Bank (QMFB), and
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cyclostationary domains are widely used to classify low probability of intercept (LPI), low proba-

bility of detect (LPD) radar waveforms [42].

STFT time-frequency (TF) domain: Out of the potential choices, I propose an STFT-

based TF representation, or a spectrogram, that fully retains real and imaginary components of

IQ signals after the transformation. Given that the TF representation will be in the shape of

an image with four channels, it is natural for us to employ 2D CNN models for the classification

problem. However, in order to deal with the issue of the large spectrogram size and the relative

sparsity, I additionally propose a patching mechanism that processes smaller regions of the input

data sequentially. To effort this, I also propose a data collection and labeling method that expedites

one’s effort.

3.4 Data Collection and Labeling

Creating synthetic datasets is popular among researchers. Open-source software like gnuradio

enables researchers the ability to generate datasets of many types of waveforms for RF ML, and

affords datasets to be shared with others in the community that may not have the ability to create

their own datasets. Additionally, software augmentation of these synthetic waveforms generates

additional datasets that can simulate real-world RF environmental conditions that may be difficult

to reproduce naturally, and varying the amount and type of augmentation can produce even more

training data. Synthetic datasets serve an invaluable service for researchers in that the labeled

datasets can help the research community focus on research versus dataset collection.

On the contrary, a dataset consisting of recordings of real-world RF signals can provide addi-

tional features that may not be created synthetically. However, those labeled real-world RF signals

are not trivial to acquire due to the hardware and software requirements (e.g., attenuators, coaxial

network, a variety of transceivers, etc.). Additionally, recording radio signals in the “wild” can

introduce ethical considerations with respect to personally identifiable information (PII)—using
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personally controlled transceivers helps reduce PII concerns.

I use gnuradio in conjunction with SigMF to collect datasets of ten common types of waveforms

in the ISM bands at 434MHz and 915MHz, as well as the 70 cm (420− 450MHz) push-to-talk

(PTT) amateur radio bands. All RF transceivers used for dataset collection were under my control

to eliminate PII issues.

Data collection and format: The SigMF formatted data was collected OTA using an Ettus

universal software radio peripheral (USRP)[14]. SigMF data consists of the IQ data file, and an ac-

companied JavaScriptTM object notation (JSON) formatted labeled meta data file. Each waveform

is recorded for ten seconds at 1 mega-sample-per-second (msps) with 16-bit integer precision and

saved as a 32-bit float IQ. The OTA data collection location is an indoor lab with many reflections

that provided natural multi-path augmentation.

OTA Setup and SDR models: The OTA training, validation, and testing waveforms are

recorded using an Ettus SDR N210[51] with SBX daughter board[52] and B205-mini. In-line and

programmable attenuators are used to maintain a consistent SNR to the SDR during data collection,

and waveforms are recorded with 30− 40 dB of SNR.

GUI software: I provide open-source tools with which researchers can collect and label their

own real-world signals for RF classification instead of using synthetically generated datasets, in

addition to those provided with this paper. Two custom GUIs, written in Python, allow the user

to extract labeled feature patches from the IQ data to train machine learning models. Following

the process, Fig. 3.3 (a), my first GUI (i.e., the interface Fig. 3.4) allows the user to select a broad

swath of spectrogram area, where a visible amount of signal activities can be found, then saved.

Then using the second GUI (i.e., the interface Fig. 3.5), as illustrated in Fig. 3.3 (b), the selected

area of the spectrogram randomly extracts a number of small patches from various locations. The

user interacts with the second phase by defining the width, height, and total number of patches to

produce. As a result, the 3D patches are stored for later use as the input “images” for the CNNs
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(Fig. 3.3 (c)).

Note that labeling is naturally done by assuming all patches extracted from a recording belong

to the same class known to the user who operates the GUI system. The user can also easily change

or add labels to the saved meta-data file, if desired.

3.5 The Time-Frequency Representation

I convert the RF signals into a time-frequency domain using STFT, as discussed in chapter 2

using equation 2.4. The Hamming window function is again maintained with a 50% hop size, to

facilitate proper signal reconstruction. With a proper choice of the windowing function and hop

size, the data does not lose much information during the transformation. The benefit of a TF

domain transformation allows visualization of both the frequency and time variations contained

in the data, which are otherwise difficult to represent. The TF representation is then a suitable

format as an input to the CNN models where the input is defined as a stacked set of “images”, a

3D tensor with 4 channels.

While TF domain classification is often defined with the magnitude of the spectrogram, I propose

to stack up both real and imaginary Fourier coefficients on top of each other. Therefore, I apply

the STFT to each of the I and Q channels, respectively, and this generates four real-valued arrays

(e.g., spectrograms). These are presented in chapter 2, equations 2.6 and 2.7.

Finally, the STFT IQ arrays are stacked to form a rank-3 (3D) tensor with four input channels.

Similarly, I computed the I and Q channel magnitudes to produce a stacked 3D tensor with two

channels to compare with each four channel network model. The GUI process described in Section

3.4 follows to extract small patches for model training.
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(a) GUI-based spectrogram
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Figure 3.3: Overview of the proposed RF classification system.
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Figure 3.4: Feature extraction GUI interface
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Figure 3.5: Random patch generator GUI interface
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3.6 The Proposed RF Classification Pipeline

3.6.1 Experimental Setup

Computing Environment: Model training was implemented via Pytorch [53] using GPU com-

puting performed on multiple GPUs via Pytorch, including:

• RTX 8000 (4608 NVIDIA® CUDA® cores) with 45GB of GPU memory.

• EVGA® GTX 1080Ti (3584 NVIDIA® CUDA® cores) with 11Gb of GPU memory.

• RTX 2080 Max-Q (3072 NVIDIA® CUDA® cores) with 8GB of GPU memory.

All listed GPUs generally provided ample memory to run most of the “light-weight” network

variations, however, only the RTX 8000 with 45Gb of GPU memory was able to run the parameter

heavy VGG and ResNet (i.e., > ResNet18) architectures and compute the STFT for IQ test files

greater than 1msps.

3.6.2 GUI-based patching

To train the CNN-based RF signal classification system, I first generate patches from the TF

representation of the training signals using the aforementioned GUI process.

The default patch size is 224 × 224 × 4; this provides sufficient spectral diversity for training

the network on the selected waveforms. This patch size may need to be reconsidered for much

wider bandwidth waveforms (i.e., 4G, 5G, and Wifi). If wider bandwidths are trained with the

current patch size, a grouper function that would consolidate like classified adjacent patches may

be helpful.

Training Data and Patching: For this chapter, a total of six waveforms per class were

recorded for each phase of the supervised learning, i.e., training, validation, and testing. 1,700

patches were collected per training waveform, totaling 10,200 patches per class, while I use 2,000

per class for validation from validation recordings.
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Each patch is saved as a 3D tensor of (time)×(frequency)×(channels), where the third one holds

real and imaginary channels of both I and Q signals. Width and height dimensions of 224×224 were

chosen for the GUI-based patching because this matched the VGG and ResNet native architectures

designed for visual object classification [54], as well as provided sufficient spectral diversity for

training the network on the selected waveforms.

3.6.3 RF Signal Classes

I focus my research on relatively narrow RF waveforms (i.e., channel bandwidth ≤ 250 kHz) in

a spectrum space of up to 25MHz of bandwidth. This means that I could have as little as one

narrow-band waveform (i.e., 3 kHz channel width) or many waveforms within this frequency space.

My approach is to not only classify one or more waveforms, but also to determine frequency and

temporal parameters. I focus on the operating frequency for this research effort, but the temporal

relationships are inherent in my method and can be used to provide of temporal metrics (e.g.,

hopping waveform timing along with channel resolution).

A variety of ten waveforms are selected for collection. The abbreviation in parentheses after

the waveform name is how the results identify the particular waveform class. The classes consists

of analog PTT transceivers (NFM) and three types of DMR transceivers (GD55, TYT, and YSF).

The collection of transceivers used throughout this research are depicted in Fig. 3.6.

All transceivers/transmitters are connected to external power when possible or receive new

batteries for optimal transmit power. Waveforms in figures 3.7(g)-(i) all use small button style

batteries and are designed to operate with much less than 20 dBm of transmit power. Antenna

selection for both transmitter and receiver hardware is optimized to match transceiver wavelengths.

Waveforms are selected based on a couple of criteria: modulation diversity (e.g., analog, digital),

and not to exceed the usable bandwidth of the lowest sample rate (i.e., (1msps)/2 = 512 kHz).

The following waveforms are illustrated in Fig. 3.7. For the plots, the time and fft axis are
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Figure 3.6: Transceivers
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chosen to exhibit good spectral details of each waveform. The time axis is limited to 300 fft bins and

correlates to 150µseconds of time displayed, but the frequency fft bin axis selection is dependent

on waveform bandwidth and waveform similarity.

The frequency fft bin resolution is matched for 3.7(a), and (b), illustrating the difference in

the two LoRaTM examples and displays ∼ 307 kHz of bandwidth. Note also the frequency fft bin

resolution for Figures 3.7(c)-(i): The value chosen helps give a sense of scale to these waveforms

with a displayed bandwidth of ∼ 61 kHz. Fig. 3.7(j) frequency fft bin resolution selection is unique

for illustration purposes and displays ∼ 102 kHz of bandwidth.

Two bandwidths of the long-range (LoRaTM) waveform are chosen, LoRaTM 125 kHz and

250 kHz (i,e., lora125, and lora250). Figures 3.7(a) and (b) illustrate these waveforms.

Analog PTT transceivers are used to collect the narrow frequency modulation (NFM) wave-

forms. The NFM waveform collection are spectrally the narrowest bandwidth of all classes with a

channel bandwidth of ∼ 3kHz. This waveform is depicted in Fig. 3.7(c).

Three DMRs (TYT, GD55, YSF) are chosen and illustrated in Fig. 3.7(d)-(f). Two ISM RF

doorbells (Vodeson and Sado) are selected; these waveforms are depicted in Figures 3.7(g), and (h).

A key finder (click) is selected and depicted in Figure 3.7(i). Finally, a RF light switch controller

(light) is selected and is illustrated in Fig. 3.7(j).

Two additional classes account for spectrogram areas that contained noise and the DC artifact

present at the center bin of the discrete Fourier transform due to the SDR design (direct conversion

receiver) [55] [56].

Data Augmentation: RF transmissions often have a variety of channel impairments. Multi-

path wave propagation, noise (e.g., environmental, transceiver, etc.), oscillator frequency drift, IQ

imbalance, and phase noise are common. For this chapter, the only augmentation was to SNR.

I inject additive white Gaussian noise (AWGN) with a “loudness” randomly chosen from a range

between 0.1 to 10.0 dB for each patch.
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Figure 3.7: Waveform Classes

CNN Models: Primarily, three CNN network models are used to classify these waveforms:

VGG16 [57] with 16 hidden layers, and ResNet [58] with 18 and 50 hidden layers, respectively.

Each optimized model was run for 100 epochs.

3.6.4 Test-Time Inference

3.6.4.1 Single-class patch case: majority voting

During the testing phase, the goal is to determine which class the observed signal belongs to,

regardless of how many patches I can extract from it. As a result, during the test period, I take the

whole four-channel spectrogram and extract non-overlapping patches consecutively (i.e., Fig. 3.3

(c)). All patches are serially batched to the model, which then combines the classification results
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to get a final choice using a majority voting mechanism (Fig. 3.3 (e)). A 10 second, 1msps test

signal, for example, turns into a 513× 19, 532× 4 tensor, which results in 174 spectrum patches.

The test-time signal classification is based on the assumption that for a given time period there

is only one dominant signal class. Indeed, I recorded the real-world test signals in a controlled

environment to meet this constraint. However, a näıve approach that simply selects the majority

class out of the patch-by-patch classification results is not a solution because signal sparsity in the

time-frequency space will classify most of the patches as the noise class.

The winner-take-all majority vote strategy is depicted in Fig. 3.3 (e). I first count all the

meaningful predictions that belong to the ten critical classes (red or grey filled circles in the figure).

The noise and DC center frequency (hollow green circles) are dummy classes and not counted.

It will equate to the sum of the red and gray dots in the figure, 13+3 = 16. I can see that 13 of the

16 patches belong to a single class (Correct for the vodeson class), whereas the gray dots indicate

that those patches are misclassified into other non-dummy classes. As a result, the entire region of

these 6× 16 patches is classed as the red dot class, i.e., Vodeson class.

The operating frequency can also be inferred from the majority voting strategy. The frequency

bin for each patch is recorded, and as classified patches accumulate, the distribution curve in Fig.

3.8 indicates the probable operating frequency of the classified waveform.

Since there is no efficient way to label each patch, I record a 10 second long signal containing only

one dominant class’s activity and performed inference on its patches. Likewise, the classification

results are for the entire 10 second long recording.

3.7 Discussion

I used three popular 2D CNN network architectures: VGG16, ResNet50, and ResNet18, where the

number indicates the number of hidden layers.

The ResNet architecture is utilized in this research; it features a number of benefits for RF
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Figure 3.8: Determining operating frequency from classified patches.

classification. First, ResNet (residual network) addresses the problem of vanishing/exploding gra-

dients through the use of “skip” connections. Skip connections take the outputs from the previous

block, input them to the next block and simultaneously feed forward around the current block and

into the next block. I utilize the ResNet 50 incarnation of this architecture; this features 50 hidden

layers, L = 30 blocks and 16 skip connections.

Each network model is further distinguished by 2 and 4 channel 3D tensor input, where the

former uses magnitudes of the DFT coefficients from I and Q channels, while the latter uses both

real and imaginary coefficients of the IQ data. These network combinations produce six different

test configurations. The models were trained using the Adam optimizer [59], and initial learning

rates were found using validation: 1×10−4 for the ResNet models and 1×10−6 for the VGG models.

With an early stopping strategy, I stored the models that gave the best validation performance and

used them for testing.

All models achieved more than 99% validation accuracy, although the test-time performance

varied due to the discrepancy between validation and testing, as well as the models’ different char-
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(b) ResNet50 2 channel (85%)
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(c) ResNet18 4 channel (83%)
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(d) ResNet18 2 channel (76%)
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(e) VGG16 4 channel (91%)
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(f) VGG16 2 channel (90%)

Figure 3.9: The confusion matrix of different systems in comparison. The total classification
accuracy is presented in parenthesis.

acteristics. Each class consists of 10 signals, whose length is fixed to 10 seconds. The classification

accuracy is then defined by the number of correctly classified divided by 100. In Fig. 3.9 I present

the confusion matrix for more analysis, where y-axis (i.e., rows) are the ground-truth class labels

and x-axis (i.e., columns) are the prediction.

The first observation I make is the overall acceptable performance of all systems. Except for

the ResNet18 2 channel input case, all the systems were able to achieve more than 80% accuracy,

showcasing the robustness of the proposed classification scheme. I also point out that the data

augmentation process that injects Gaussian random noise to the input patches helped stabilize the

test-time performance. The comparison between the ResNet models leads to the conclusion that

the deeper ResNet50 models (∼ 23.5M trainable parameters) outperform the shallower ResNet18

models (∼ 11M), and imply that deeper models are more favorable.

On the other hand, VGG16 models showed an interesting behavior: their overall performance

is good (91% with 4 channel input and 90% with 2 channels), but given that they have many

more parameters (134M), the performance is not impressive. This behavior is expected because
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ResNet’s more advanced features, such as skip connections, are known to outperform VGG. For

example, considering the test-time inference complexity of these models, as well as the performance,

ResNet50 on the 4 channels should be the choice rather than VGG16. In an extreme environment

where minimal resource usage is required, ResNet18 should be the choice.

It is also noticeable that the proposed 4 channel input tensors greatly outperform the 2 channel

inputs. It is because the 4 channels retain all the details about the phase information, which the

2 channel data is missing. The difference is more salient in the smaller ResNet models than the

VGG16 models.

3.8 TF domain classification summary

This chapter explored RF classification by defining it as an “image” classification problem on

multi-channel input. I show that popular 2D CNN models, such as ResNet and VGG, can classify

waveforms in the time-frequency representation. I also observed higher accuracy when using all

the magnitude and phase information of the TF representation of the IQ signals compared to using

the magnitude-only approach that is more popular in the literature. I open-sourced my project

not only to improve reproducibility, but to help the researchers create their own dataset via my

proposed GUI-based annotation system.
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Chapter 4

TF domain RF classification: Multi-sample rate/Multi-SDR

In the last chapter, I focused my design on an ISP classification system to train on only one sample

rate for a specific SDR. This may meet requirements for a number of purposes; however, many

SDRs can sample the RF signals at different sample rates. Sampling only the bandwidth of interest

can reduce noise into the system by focusing only on the spectrum of interest. To this effort, I

design a system to ideally train on multiple given sample rates, then inference on an unseen sample

rate.

In addition to a multi-sample rate SDR, using various SDR devices should be considered.

ML models are highly sensitive to subtleties in data. Different noise figures and performance

specifications of SDRs can affect classification performance significantly unless they are properly

incorporated into the training procedure. In this chapter, I use multiple SDRs for data collection as

well as for testing. Multiple sample rates and multi-device choices present a number of challenges

that require a hybrid approach to training the classifier. To the best of my knowledge, identifying

various discrepancies observed in the SDRs and overcoming them via a data-driven approach is a

novel contribution of this work.

While a RF spectrum can be very sparse, it can also be extremely dense. It is not uncommon

for more than one waveform to be in close channel proximity to another waveform, or to partially

or completely occupy the same channel as another waveform. Multi-source waveform classification

then becomes challenging as the number of waveforms increases and the proximity to each other

decreases. A cognitive transceiver would need adequate spectral “situational awareness” to make

informed changes to waveform parameters. The proposed method provides for classification of up

to three waveforms per patch, with various degrees of superposition.
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4.1 Related work

In the time domain, O’Shea et al. [60] [61] [62] perform motivating examples of RF classification,

as well as [63] and [64].

In addition to the time domain, IQ data can be transformed to other domains that offer addi-

tional benefits that the time domain does not provide. The cyclostationary bi-frequency domain

utilizes the wide-sense stationarity of 2nd order statistical moments of RF waveforms [65]. This

domain is used in [66] [67], and [42] to perform RF classification on communication and radar

waveforms. These classification methods differ from my approach in that I choose an alternative

TF domain to perform the classification.

Machine learning (ML) models trained in [49], [68] and [69] use artificially derived datasets. The

synthesized datasets have merit as they can be acquired more freely than real-world recordings.

In addition, OTA waveform affects can be simulated through data augmentation to mimic real-

world channel conditions (e.g., multi-path, IQ imbalance, etc.). However, I differentiate this chapter

through the use of commercial-off-the-shelf (COTS) hardware and OTA transmission to organically

collect labeled RF IQ datasets. This allows for natural channel augmentation, as well as real-world

hardware specific imperfections (e.g., IQ imbalance, phase noise, etc.), to be introduced into my

datasets.

The aforementioned works differ from my approach in another respect. In the last chapter, I

focused on physical-layer RF classification by transforming IQ data from the time domain to the

TF domain via STFT. Prior research, such as [69] [43] and [49], also use TF domain IQ data but

are different from my approach. I use all the information from the TF transform versus their lossy

magnitude-only representation of the TF transform or only partial phase information.

The TF domain provides notable benefits thanks to its ability to visualize the spectrum. First,

it allows us to use graphical user interfaces (GUIs) to visualize and interact with the signals, which

is an important part of my data collection. I collect data from my COTS hardware OTA, this
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means that features of interest could be very sparse and also contain signals that are of no interest.

Visualization is then vital for sorting out good data and with my open-sourced GUI, users can

visualize the RF signals via STFT and then draw bounding boxes around the useful sub-area,

which is then sub-divided into small patches.

Second, the TF representation can be considered as a spatially structured array, a rank-4 tensor

to be specific. Accordingly, the patch can be seen as an “image” with four channels, which is a

common representation used in various computer vision systems based on the convolutional neural

network (CNN) architecture (e.g., VGG [57] and ResNet [58]). Users can then conveniently inherit

the network architectures from the existing CNN classifiers with only minor modifications to the

framework (i.e. number of classes and input channels). Third, during inference, I can determine

the operating frequency (i.e., within the resolution of a frequency subband) of classified waveforms,

patch by patch, as well as keep track of temporal aspects of the waveform.

4.2 SDRs and format

New datasets were collected for multi-sample rate classification using four Ettus USRP SDRs: This

included an N210 [51] with SBX daughter board [52], B200, B210 [70], and B205-mini. The data

consisted of an IQ data file and JavaScriptTM object notation (JSON) formatted labeled meta

data file, as before. These new dataset collects contain recorded training, validation and testing

waveforms from multiple SDR models, as well as various sample rates.

For this research effort, all settings were automatic with respect to attaining the final sample

rate. For automatic sample rate selection, only the sample rate was requested in the GNU radio

flow graph. The decimation rate (DEC) for the B2xx SDRs is derived from the master clock rate

(MCR) automatically chosen at run time. Table 4.1 illustrates the four MCRs that were observed

during runtime, along with the calculated DEC. Similarly, the N210 SDR uses a fixed clock rate of

100MHz, requiring different decimation rates. Table 4.2 has the derived decimation rates for each
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(a) Transmitter/Receiver setup

Figure 4.1: Standard test setup

requested sample rate.

4.3 RF signal isolation

During OTA signal collection, it is important to choose operating frequencies that would minimize

extraneous RF signals that are operating in the same recording bands. Any foreign in-band signal

could cause problems with the feature extraction process, and contaminate the training, validation,

and test data. Signal isolation is accomplished through ISM frequency band selection, along with

received signal level (RSL) setup and hardware attenuation. Through most of the recordings, any

in-band external signals were well below SNR threshold that would incur CNN model concerns

(i.e., below the receiver’s noise floor).

4.3.1 Test setup

The standard hardware setup is depicted in Fig. 4.1. The attenuators before the transmitter

antenna varied from 0 − 40 dB, depending on the transmitter power. Also, the high powered 30 dB

attenuator before the receiver antenna is only used when high powered transmitters are used.

4.3.1.1 SNR

The CNN model is very sensitive to changes in SNR: A robust model would need a large diversity of

training and validation data with many SNR levels. I limited that scope of change to about 10 dB
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of SNR delta. In-line and programmable attenuators are used to maintain Received Signal Levels

(RSL) between −55 to −65 dBm at the SDR performing the recording. From experience, −60 dBm

approximates the RSL level that would be received from the average 5W PTT transceiver at 100m

when operating OTA in the 2m and 70 cm amateur radio bands in a clear line-of-site configuration.

These power levels were chosen to provide ample SNR, provide realistic signal levels, and keep the

received signal relatively clean and within good linear operating range of the SDR. The actual gain

settings for the SDR were modest; zero to 20 dB of gain was typically used. The manufacturer

recommends gain values to be at least half of the maximum allowed values (i.e., ∼ 35dB), in

order to maintain dynamic range, but this was not feasible due to my recording setup and did not

adversely affect my results.

4.3.2 Test transceivers

4.3.2.1 Chirp spread spectrum

The HopeRF RFM98 transceiver module is used for LoRaTM waveforms. This waveform features

digital chirp spread spectrum technology for low data rate, but large processing gain requirements.

Figures 3.7(a), and (b) illustrate these waveforms. Two bandwidths are selected for this research:

125, and 250 kHz. The transceiver module output power is rated at 20 dBm and required no

external attenuation and minimal attenuation and gain at the SDR receiver. A dedicated 5V

power supply is used to power the transceiver.

4.3.2.2 Handheld Analog PTT

The Yaesu VX-8DR (5/2.5/1/.05 Watt), and Baofeng UV-5R (4/1 watt) are used to collect the

NFM waveforms. These transceivers are reduced to their lowest power setting (i.e, .05 and 1 Watt

respectively) and external attenuators are mounted to the SubMiniature version A (SMA) antenna

connectors to achieve proper RSL values at the receiving SDR.
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4.3.2.3 Handheld DMR PTT

The first handheld DMR, the TYT MD-380 (5/1 Watt), uses Time-Division Multiple-Access

(TDMA) to double the number of users on a single 12.5 kHz channel. The TYT waveform is

depicted in Fig. 3.7 (d): Note that only one of the two available TDMA channels are used. The

second one, Radioddity GD-55 (10/4 Watt), appears to use both TDMA time slots for a single user

and is depicted in Fig. 3.7(e). In both transceivers, output power is set to the lowest value, and

attenuation is adjusted similarly to that of the analog PTT radios.

4.3.2.4 Base station DMR PTT

The Yaesu FTM-400DR (50/20/5 Watt), depicted in Fig. 3.7(f), has four modes of operation: one

analog and three digital modes. I used the DN mode: A 12.5 kHz channel is split into two 6.25 kHz

adjacent channels. One channel is reserved for digital voice, while the other half of the channel is for

data error correction. The digital modes are a proprietary standard that would not demodulate on

either the TYT or GD55 transceiver, but both the TYT and GD-55 transceivers would demodulate

on the FTM-400DR. The output power is set to 5Watts, and input power is achieved using a

dedicated 12V power supply. A high power attenuator (30 dB) is used at the receiver antenna, in

conjunction with programmable low power attenuators before the SDR receiver.

4.3.2.5 ISM doorbells

The vodeson HD03 (Type MN21/23 12V battery) and SadoTech model C (A23 12V battery)

ISM doorbells transmit power is well under 20 dBm. The OTA configuration required minimal

attenuation and moderate gain at the SDR receiver.
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Table 4.1: B2xx Auto sample rate selection

msps vs. MCR and DEC MCR DEC

1msps 32MHz 32
5msps 40MHz 8
10msps 40MHz 4
25msps 25MHz 1

Table 4.2: N210 Auto sample rate selection

msps vs. MCR and DEC MCR DEC

1msps 100MHz 100
5msps 100MHz 25
10msps 100MHz 10
25msps 100MHz 4

4.3.2.6 Key finder

The Click ’n Dig® model D2 (Type 27 12V battery) transmit power is similar to the ISM doorbells.

The OTA configuration required no attenuation and moderate gain at the SDR receiver.

4.3.2.7 Light switch

The LoraTap® transmitter (part number BA101KS-915E26WHI) is the only waveform from the

915Mhz ISM band and is illustrated in Fig. 3.7(j). Because the operating frequency is much

higher than the 434Mhz ISM band, the SDR gain settings were increased to mitigate OTA path

loss, and low transmitter power (two 2032 3V button batteries) to achieve the −60 dBm RSL level

target values.

Sample Rate msps =
MCR

DEC
(4.1)
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4.4 Methods and Procedures

The feature extraction process that is laid out in section 3.4 is used to extract training and validation

patches.

4.5 Patching

I record ten new waveforms per class for each phase of the supervised learning, i.e., training,

validation, and testing for the four sample rates, 1, 5, 10 and 25msps. Then, approximately 1, 000

patches are collected per training waveform, totaling over 10, 000 patches per class, plus additional

noise class training sample patches. This yields a total of about 362, 200 training samples. While

2, 000 patches per class are extracted for validation from the validation recordings, resulting in

about 96, 000 validation sample patches. For one class/patch testing, I use 10 RF signals per class,

where patching is done sequentially to capture all source-specific activities. For testing, the GUI

and random patching process is not involved.

Like before, two additional classes were used to account for spectrogram areas that contained

noise and the DC artifact. First, to carefully handle the effect of noise floor, I also used training

patches from the noise area. There are discernible waveform artifacts in the noise floor throughout

a given test file that can cause the models to classify noise patches incorrectly if they were not

handled properly.

Extracting noise patches from the ten primary class waveforms significantly reduces incorrect

classification during validation and testing. This means that I specifically extracted patches that

appear to have no features from the primary signal classes. This results in a training set that is

unbalanced, due to the significant increase in noise training patches, but a significantly improved

validation and testing accuracy.

These extracted noise patches are then labeled as the noise class. In addition, DC artifacts

are present at the center bin of the discrete Fourier transform due to the SDRs direct conversion
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receiver design [55] [56]. These two classes are dummy classes and should not be considered during

testing as the primary signal classes of interest, although their explicit use in classification plays

a significant role in improving the detection accuracy. The complete training sets then consist of

twelve classes in total. Again, Each patch is saved as a 3D tensor as mentioned in section 3.6.2.

There are a total of 361, 200 patches used for the combined 1 and 25msps training to represent

12 classes, while the network batchsize was set to 64 patches. 49, 200 of these patches are for 1msps

noise class, and 90, 000 were 25msps noise class. It is notable that 38.5% of all training data was

to properly discern noise. This is due to the ML models miss-classifying noise as one of the ten

primary classes. There are very low SNR (i.e., negative SNR) artifacts that are only detectable

by the CNNs. The additional noise patches are harvested from non feature areas (i.e., noise) of

the Click ’n Dig®, GD55, LoRaTM 125 kHz, LoRaTM 250 kHz, NFM, and YSF training data files.

This was in addition to pure noise training data extracted features.

4.5.1 Computing Environment

The computing environment again consisted of using PyTorch 1.6 [53] using graphical process-

ing unit (GPU) computing: dual RTX8000 (4608 NVIDIA® CUDA® cores) with 45GB of GPU

memory.

4.6 Classification Methods (CNNs)

RF classification is performed in the frequency domain via STFT: All real and imaginary infor-

mation was retained after transformation and used in a ResNet [58] based 2D CNN models. As

before, the TF domain facilitated feature extraction for supervised model training.

4.6.1 CNN Model

Similar to chapter three 3.6.3, the network ResNet model with 50 hidden layers is adapted to four

channels, and then limited the number of classes to twelve. However, in this case, each optimized
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model is run for 10-15 epochs for each of the three scenarios (i.e., 1 class/patch, 2 classes/patch, 3

classes/patch).

4.7 The basic training process with a multi-sampling rate treatment

I train the CNN model to work on four sample rates. This could have required a dataset consisting

of all four sample rates, but for this effort, I choose two extreme sample rates, i.e., 1 and 25msps.

The classifier is then expected to interpolate the remaining in-between sample rates. The IQ data

comes from several SDRs, with various accuracies, including different phase accuracies across the

same hardware at different sample rates(see Chapter 5).

To train this classification system that estimates one class per patch, I use a softmax function

in the output layer, which takes the flattened and dimension reduced feature as the input (Fig. 3.3

(d)). The flattening and dimension reduction step is required as the ResNet’s bottleneck blocks

do not reduce the feature dimension and can result in an unacceptably high dimensional feature

vector. The most basic model assumes that there is only one class active per patch. I then use a

softmax output layer for this basic model and Adam optimizer used with a default learning rate

[59].

4.8 Data augmentation

Data augmentation is widely used, but simulating issues that COTS components may exhibit is

not always possible. Instead, I try to variate the COTS RF transmitters and record them OTA

to include a number of natural channel impairments (e.g., multi-path, noise, oscillator drift, IQ

imbalance) into the data collection. The only purposely added augmentation was to the background

noise floor. I injected additive white Gaussian noise to match the receiver’s measured noise floor

(i.e, ∼ −92dBm) in order to assure that model would not “learn” from the static noise within a

given tensor patch.
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Additionally, COTS hardware often feature “built-in” artifacts or augmentation (e.g., noise

figures, power amp third-order intermodulation distortion (IMD3), design implementation, and

manufacturing process flaws) that could influence ML model classifiers.

4.9 Multi-class patch treatment

The advanced classification scenario is when multiple classes of RF signals are overlapping each

other in the TF domain. The goal is to properly identify all those activities, although the task is

more challenging than the basic single-class case, which is a straightforward classification problem.

To address this case, I repurpose my training dataset and the model’s final output in order to detect

and classify up to three classes that operate withing varying overlap within the same patch.

4.9.1 Dataloader modification

First, the multi-class support requires modifications to the data preparation. Out of all 1 and

25msps training patches, I combine up to three patches randomly selected from different classes.

They are added in the TF domain as the four-channel tensor representation essentially retains all

information coming from the IQ signals compared to the magnitude-only “spectrograms”. Although

it is not natural, I deliberately allow patches to merge from both sample rates as it can expose the

model to a greater variety compared to mixed patches of like sample rate data.

4.9.2 CNN modification

I also tweak the softmax output layer to properly address multi-class patches. Originally, a softmax

layer predicts the posterior probability values P (y = c|X) that sum to one:
∑C

c=1 P (y = c|X) = 1,

where c indicates one of the C class labels. Now, for multi-class handling, the model performs a

class-wise logistic regression, which still outputs C different posterior probability values P (y = c|X),

but with no sum-to-one constraint. It means that each class can appear in the input patch with

its own probability. In theory, all classes could be present and
∑C

c=1 P (y = c|X) = C, although I
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expect up to three classes due to the training data preparation. Likewise, it is equivalent to say

that I turned the model into performing C individual binary classification tasks, each of which

detects the presence of the corresponding class.

4.9.3 Combining test files and labels

Once the combination for testing is determined, the entire test files are combined in the time domain

to create a single IQ file. Then, the labeled integer classes are first converted to a binary equivalent,

e.g., [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] for C = 2, next a bitwise logical OR operation is applied with each

binary label to produce a proper binary multi-class label. For a test signal with classes C = {2, 6, 8}

active, for example, the corresponding binary label vector is [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0].

I want to test up to three signals in a given patch, but this approach has a limitation in

practice. There is no control over how close the waveforms are to each other when the IQ data files

are combined, which occasionally leads to patches that are with only one or two classes that are

co-channel.

The test-time classification accuracy is computed to take into account the multi-class presence

within one patch. To test multi-class patches, I perform a bitwise AND operation between the

predicted classes along with the binary label of the combined class test file. Finally, a threshold

value for correct number of classifications is used to determine if multi-class classification was

correct. The threshold chosen affects the overall test file classification; therefore, I provide a range

of plotted accuracies vs. threshold in Fig. 4.10

Ultimately, to address the issues with combining IQ files and determine multi-class classification

efficacy, I also examined the validation accuracy. During validation, individual patches with labels

are combined then batch passed to the classifier, then compared against the predicted patch to

determine correct classification. This is depicted in Fig. 4.3
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4.10 Experimental Setup

4.10.1 Data collection process and format

4.10.1.1 Overview of the data collection process

IQ waveforms are recorded for ten seconds at four sample rates: 1, 5, 10 and 25msps. Integer 16-bit

IQ data from the SDR is saved as 32-bit floating-point representations for ML model processing.

The OTA data is collected indoors with multiple reflections that provided natural multi-path aug-

mentation. The average distance from transmitter to receiver is approximately four feet, within

the far field for all hardware used. Attention is paid to minimize leakage paths around coaxial

attenuation routes due to short physical Tx/Rx distances.

For higher sample rates (i.e., 5, 10, and 25msps), I maintain the frequency resolution of

976.56Hz by scaling up the DFT resolution to match higher sample rates. For example, for 5msps,

the original choice of 1024 frequency bins are multiplied by five. This means that the frequency

bin resolution is 5MHz/(1024 ∗ 5) = 976.56Hz. The same method is used to scale up the 10 and

25msps frequency bins. I’m motivated to train on data from any sample rate, then inference on

any alternate sample rate by keeping the temporal and frequency resolution relative. Although in

theory this process must guarantee standardized patches regardless of their original sample rate, in

practice the patches from different sample rate are considered different by the CNN models. Then,

I train the model from the two extreme sample rates, 1 and 25msps, and let it interpolate the

other sample rates in-between during the test time. The investigation into this issue is detailed in

Chapter 5.

4.10.1.2 Software

Similarly to section 3.6.2, All datasets collected consist of COTS transmitters, transceivers, and

transceiver modules. I use open-source SDR software GNU’s-not-Unix (GNU) radio [71] to record
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the labeled IQ waveform data to file.

4.10.1.3 Operating bandwidths

Similarly to chapter 3, GNU radio with out-of-tree module SigMF [28] is used to collect IQ waveforms

from ten different types of COTS hardware that operate in and around the 434MHz and 915MHz

ISM bands. Additionally, IQ data from push-to-talk (PTT) radios operating in the 70 cm U.S. band

(420 − 450MHz) are also collected.

I focus on relatively narrow RF waveforms (i.e., channel bandwidth ≤ 250 kHz) in a spectrum

space of up to 25MHz of bandwidth. This means that I could have as little as one narrow-band

waveform (i.e., 3 kHz channel width), or many waveforms within this frequency space. My approach

is to not only classify one or more waveforms, but also to determine frequency and temporal

parameters. I provide operating frequency results for this chapter, but the temporal relationships

are inherent in this method and can be used to provide temporal metrics (e.g., hopping waveform

timing along with channel resolution).

4.11 Experimental Results

4.11.1 Cross-sample-rate testing: single class per patch

Three different models are trained from three sample rate setups, i.e., 1, 25, and mixed (i.e., mixed

≡ 1 and 25msps). Each of these models are tested by four different kinds of test signals with four

test-time sample rates, i.e., 1, 5, 10, and 25, i.e., there are test signals with mismatching sample

rates. The results are illustrated in Figures 4.5, 4.6, and 4.7 as a confusion matrix, as before, where

columns are the predicted classes while the rows are the ground truth. Therefore, all rows should

add up to ten because there are ten test files per class. In cases that each row does not sum to ten,

that means that the model incorrectly determined the test data belonged to the noise class or DC

center frequency class. A perfect classification would be the case where all the diagonal elements
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are ten, which sum to 100.

4.11.1.1 Patch validation accuracy

Before discussion of test-time model performance, first the validation accuracy of the models are

examined. Here, the validation process is on the set-aside patches annotated by the ground-truth

class labels. I can then compute the patch-by-patch classification accuracy without involving the

majority voting algorithm, which is only to consolidate results from multiple patches.

I examine the validation accuracy every 100 training batches for the first 1500, then every

1000 training batches thereafter. Early stopping is done by storing the model that gives the best

validation accuracy and using it for testing.

Fig. 4.2 illustrates the validation accuracy of the three trained models. Fig. 4.2 (b) and (c)

show the models trained from 1 and 25msps examples, respectively, while (a) represents the model

trained from the mixture of the two sample rates. First, in Fig. 4.2 (b), the validation accuracy from

the matching sample rate, 1, reaches a near perfect accuracy after about 1, 000 batches. However,

validation on the 5, 10, and 25msps data indicates accuracy between ∼ 20− 63%, with decreased

accuracy as the sample rate increases. Similarly, in (c), the model suffers from mismatching sample

rates for the validation of 1, 5, and 10msps data. These two examples identify the issue of phase

noise introduced by some devices as I discuss in Chapter 5.

To address this issue, I propose to train the CNN model using two datasets recorded in the two

extreme sample rates, 1 and 25. Then, I expect that the model interpolates the other sample rates

in between the two. In 4.2 (a), the interpolated sample rates, 5 and 10 msps demonstrate better

performance with the mixed sample-rate strategy, with an accuracy over 80%.

4.11.1.2 Test accuracy

Fig. 4.5 depicts the test results from 1msps training. Here, the test was done on the whole

test signal based on the majority voting algorithm that consolidates patch-by-patch classification
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Figure 4.2: Validation accuracy for 1, 25, and mixed msps training
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results. For this particular model, since it is trained from the lowest sample rate, the accuracy

decreases as the test-time sample rate increases. Meanwhile, there is no clear relationship between

miss-classifications and waveform bandwidth or modulation types. The model performs well on the

matching sample rate, 1msps Fig. 4.5 (a). On the interpolated sample rates (b)-(d), the model

fails to adequately perform.

Fig. 4.6 depicts the results from 25msps training. On the contrary to the 1msps case, the

accuracy increases as the sample rate decreases. The 25msps testing never achieved the accuracy

that the validation results suggested were possible.

The proposed mixed sample rate training is shown in Fig. 4.7. The accuracy for all sample rates

performs well when compared to the component rates of in Fig(s). 4.5, and 4.6. What is noticeable

is that combining the training data for 1, and 25msps patches significantly increases not only the

interpolated rates of 5, and 10msps, but also those matching sample rates. This indicates that the

patches extracted from different sample rates increase the diversity within the training set, leading

to a classifier robust to the variations caused by different devices and sample rates. Considering

that the training data is derived from multiple SDRs and sample rates, it appears that the model

is able to overcome many of the issues associated with phase noise (see Chapter 5).

4.11.2 Multi-class per patch

In addition to the single-class per patch case, I also examine the proposed multi-class per patch

model’s performance on the test signals that contain up to three classes.

4.11.2.1 Multi-class mixing with data loader

The method for training the classifier for multiple classes per patch requires combining patches

using the data loader. The data loader first makes a random list of all training patches (i.e., 1, and

25msps): For two classes per patch, the first half of the list is combined with its corresponding

patch in the second half of the list resulting in half the original number of training patches. Simi-

61



larly, for three classes per patch training, the data loader list is divided into thirds and combined.

Accordingly, the training epochs is therefore approximately doubled and tripled to keep the training

relative to each class per patch run.

4.11.2.2 Patch validation accuracy

Given the observation that multiple sample rate training is useful, training patches are mixed from

both 1 and 25msps training sets. This mixture of sample rates is not a scenario that would happen

during validation, testing, or during live inferencing, but it produces better accuracy than when

the training data is separated by sample rate.

Combining the validation patches for two and three classes per patch is similar to the way

training data was combined, except that only like sample rates are combined. Fig. 4.3 illustrates

the two and three patch/class validation accuracy vs. epoch. When I compute the validation

accuracy, I consider all K classes that are present in the patch. For example, if there are {LoRa125,

NFM, and YSF} in the patch, while the classifier predicts that {LoRa125, NFM, and Light} are

there, it is a misclassification; the classifier knows the number of active classes. Note that I use a

more sophisticated evaluation metric for test-time classification discussed in Sec. 4.11.2.3.

Fig. 4.3 (a) indicates 90% accuracy for two classes per patch for 1 and 25msps patches, with 5

and 10msps validation tightly coupled around 60% accuracy. Three patches per patch accuracy is

illustrated in (b) and still indicates good classification for the mixed sample rate validation accuracy,

while 5 and 10msps validation patch accuracy drops to 50% accuracy. Note that the chance of

correct classification is 1/
(
10
2

)
= 1/45 and 1/

(
10
3

)
= 1/120 when K = 2 and K = 3, respectively.

The validation patches are extracted using the previously discussed GUI process; therefore,

each tensor patch contains features from exactly one waveform, that when combined with other

validation patches, results in waveforms that are all occupying approximately 218.8 kHz (i.e., 224×

976.56Hz) of bandwidth. This means that the validation scenario more rigorously tests the ML
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Figure 4.3: Validation accuracy for 2 and 3 classes/patch scenario

models multi-class per patch classification capabilities. These patches are originally extracted

randomly in frequency and time, allowing a greater freedom of variability of waveform overlapping

in the frequency space versus when compared to combining IQ test files, where waveform frequencies

often do not change during the IQ data collection process.

4.11.2.3 Test-time performance on multi-class per test signal examples

When I artificially mix signals at the patch level for training and validation, I can control the exact

number of classes per patch. In the real-world test scenario, however, mixing occurs in the signal

level. Therefore, although I still fix the number of classes within a test signal to be K = 2 or K = 3,

an individual patch of the signal is not guaranteed to contain all K classes. It is because the IQ

data files are very sparse in nature; the propensity for waveforms to actually combine such that

three waveforms are always in the same patch is less likely. To test the accuracy of the classifier

for this scenario, I create a detection mechanism based on counting and thresholding.

First, the classifier uses class-wise logistic regression as its last layer activation. In this way, the

classifier predicts a binary vector, yj ∈ R10, for the j-th patch of the test signal. The sum of all

the prediction vectors from the patches in the test signal yields a count vector Y =
∑

j yj , whose

value ranges from 0 (i.e., the class activity is not detected) to J (i.e., all patches contain the class).

Note that I ignore the noise and DC center frequency classes.
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Second, at the end of the test, for a given class of interest, c, if the sum of the total matched

classes Yc exceeds a pre-determined threshold τ , then this constitutes a match for the c-th class in

the test file. The system’s trade-off between the false positive and true positive ratios is sensitive

to the choice of the threshold τ : if it is too low, too many classes will be detected although they do

not exist (i.e., false positives), while a too high value can fail to detect important class activities.

I vary this threshold to gauge the system’s performance on the multi-class test examples.

I construct two sets of test signals. When K = 2, I combine
(
10
2

)
= 45 test signals that originate

from 10 classes. For K = 3, the set amounts to 120 examples. This combination testing assures

that every combination of the ten waveforms is tested.

Fig. 4.10 and Fig. 4.11 illustrate the models’ receiver operating characteristics (ROC) for two-

and three-classes-per-signal cases, as well as their area under the curve (AUC) scores. To compute

each true positive ratio (TPR) and false positive ratio (FPR) pair, I try different τ values that

result in different TPR-FPR value pairs. When I test two classes per signal K = 2, I can see from

Fig. 4.10 that all four sample rates do well, with the general exception of YSF.

The YSF, GD55, and TYT waveforms all use a 4FSK based modulation. During single class per

patch training, these three similar modulations are trained with a specific label, and the classifier

does a good job of discerning the differences between these modulations (Sec. 4.11.1.2). However,

during training for two and three classes per patch, the binary labels contain a class for each training

patch. When multiple training patches for the 4FSK modulated waveforms are mixed together, the

model does not know which label belongs to which mixed waveform, so it can start generalizing

the relationship between these very similar classes.

There are also instances of training multiple classes that would only have one of these 4FSK

waveforms mixed with a different class, which should help the model discern the difference between

the 4FSK waveforms. Examining Fig. 4.10 plots (a)-(d) illustrates that of all the tested classes,

the 4FSK modulations are exhibiting poor ROC curves, as well as much lower AUC scores. The
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model generally favors the TYT, and GD55 class over the YSF for each sample rate.

Fig. 4.11 illustrates the receiver’s characteristics for the three classes per patch tests. I see

similar class characteristics when compared to the two classes per patch results. However, the

three classes per patch scenario expects the model to possibly discern the differences between all

the 4FSK modulations in a single patch. During training there are significant patches that would

contain all three classes with matching labels that can further blur the distinction between which

of the three 4FSK waveforms belong to which label.

Additionally, the poor results for NFM in Fig. 4.11 (d) appear to illustrate that at a wide

frequency bandwidth (e.g., 25msps) lacks sufficient model generalization for the NFM waveform

(e.g., the NFM waveform is typically ∼ 3 kHz).

Overall, with the exception of the YSF waveform, the two and three class per signal scenarios

show a robust ability for the models to properly classify the waveforms, depending on the receiver’s

thresholding value.

4.11.3 Waveform frequency occupation

In addition to the classification application, frequency domain classification and the patch method

naturally provides the ability to determine the frequency of the classified waveforms within ∼ 1 kHz

of accuracy. It is a convenient feature that comes with TF domain processing, as once a patch is

extracted, I know exactly which subbands it occupies. With successful classification, I can track

back the frequency area that the same-class patches originate.

4.11.3.1 Multiple waveform co-located test cases

With RF analysis tools such as a real time spectrum analyzer, I can usually determine the correct

type of waveform in a channel. However, if the channel has more than one waveform co-located,

this becomes more difficult. I directly tested the classifier’s ability to test several IQ data files that

had two and three waveforms combined and operating in the same channel. For this test I used
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(a) NFM 1msps (b) NFM 25msps

Figure 4.4: Operating frequency

1msps test files and three different narrow bandwidth waveforms. Classified patches (excluding

noise and center bin fft) were printed, along with the probable waveform. The results in Fig. 4.9

(a), and (b) indicate that the 4-channel STFT tensor method can provide accurate results from

multiple waveforms per patch.

4.12 Chapter Conclusion

This chapter explored RF TF multi-channel classification using multiple sample rates and multiple

hardware devices. I observed higher accuracy when using training data from a mixture of sample

rates, and was able to interpolate additional sample rates for which the classifier had never been

trained. Additionally, I showed that SDRs can exhibit levels of phase noise across different models,

and across a particular model’s sample rates. These differences show that a robust classifier benefits

from a variety of SDR derived data sources, and SDR hardware.
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Figure 4.5: 1msps training
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Figure 4.6: 25msps training
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Figure 4.7: Mix sample rate training

69



01 5 10 25
Sample rate in MSPS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

%
 a

cc
ur

ac
y

0.91

0.46 0.44
0.370.36

0.6

0.45 0.45

1.0
0.93 0.96

0.85

Test Accuracy

1
25
Mix

(a) ResNet50 Accuracy Vs. Sample rates

Figure 4.8: Test accuracy of 1 class/patch: Accuracy vs. sample rates

Figure 4.9: Correct classification 1 msps: patch co-channel
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 4.10: Roc for 2 classes/patch
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 4.11: Roc for 3 classes/patch
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Chapter 5

IQ Phase investigation

Maintaining temporal and frequency bin resolution at different sample rates should allow the CNN

to train at a given sample rate and inference on any subsequent chosen sample rate (i.e., train on

1msps, and inference 25msps). In practice, this does not provide adequate performance. I suspect

time domain aperture jitter [72], and oscillator jitter was leading to frequency domain phase noise

[73] [74], and thereby affecting the CNN performance across multi-sample rate domains. [75]

specifically tested the phase noise between two of the SDRs that I use in my research (i.e., N210

and B205-mini) and noted different spectral spur locations, as well as differences in phase noise

characteristics as the carrier wave (CW) offset frequencies increased. These differences could affect

the classification results by training on one model of SDR, and inferencing on another. I mitigate

some of the effects of phase noise through multiple sample rate training data, as well as collecting

datasets from multiple SDR hardware models. Future research will investigate additional SDR

hardware and IQ corrections at the SDR hardware.

5.1 Phase test setup

The phase relationship between SDR hardware and sample rates are examined. I chose a GNU

radio generated sawtooth waveform, as well as a FMCW waveform generated by the LoRaTM RF

transceiver module as baseline waveforms for analysis. The angle between I and Q of a sawtooth

waveform can be used to plot a subsequent sawtooth waveform. This principal is used to locate

distortion caused by the SDRs. A SDR is used to transmit a GNU radio created flowgraph, 1 kHz,

3 amplitude sawtooth waveform at 433.7Mhz. The transmitting SDR is connected to the receiving

SDR via a closed-loop coaxial setup. Attenuation and gain are adjusted as necessary to maintain

−50 dBm at the receiver. Spectrally, the test sawtooth, and LoRaTM waveforms are anchored at
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Fc + BW/4 for each SDR receiver sample rate, where Fc is the center frequency of the receiver,

and BW is the bandwidth of the sample rate (i.e., 1msps ≡ 1MHz of bandwidth).

The recorded IQ time domain data is then read into Python numpy arrays as complex data

(i.e., I+jQ), then the function angle is used to convert each IQ data file into an array of angles in

radians. The plots depict the phase relationship between I and Q in the complex domain.

Since I’m depending on a SDR to transmit the GNU radio sawtooth, I also compared phase

relationships against the LoRaTM RF transceiver module. This module produces FMCWwaveforms

that shift their start frequency to denote a different symbol. I expected the FMCW waveform to

produce results that would be similar to those of the standard GNU radio sawtooth waveform, but

mitigate any possible bias from only using a SDR for both transmit and receive results.

5.2 N210

The N210 accuracy is measured and compared in [76] and [77]; The results from that test indicate

that the N210 should produce good phase accuracy results. When I used the N210 in my testbed,

this SDR produced results that were consistent across multiple sample rates. The phase plots in Fig.

5.1 and Fig. 5.3 are expected, with the exception of phase reversal when (a) and (b) are compared

to plots (c), and (d) in both phase plots. The sawtooth and LoRaTM constellation diagrams in

Fig. 5.2, and Fig. 5.4 are each plotted against a noise collect from matching sample rates. The

constellations are similar between sawtooth and LoRaTM.

5.3 B210

The B210 SDR features an automatic adjustable master clock. The phase plots in Fig.5.5 and 5.7

show a number of differences between (a)-(d). The time scale on all B210 plots is kept the same for

comparison. The B210 constellation diagrams are shown in Figures 5.6 and 5.8 and each plotted

against a matching noise collect at their associated sample rate. The sawtooth constellations are
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.1: N210 1 kHz sawtooth IQ phase
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Figure 5.2: N210 1 kHz sawtooth IQ constellation
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.3: N210 LoRa 125KHz IQ phase

notably different from the LoRaTM constellation and each constellation plot consists of only enough

samples to depict a good constellation representation.

5.4 B205

The B205 SDR also features an automatic adjustable master clock. Similar to the B210, the phase

plots in Fig.5.9 and 5.11 show a number of differences between (a)-(d). The time scale on all B205

plots was kept the same for comparison. The B205 constellation diagrams are shown in Figures

5.10 and 5.12, and each plot also contains a noise collect from the associated sample rate. As

reported with the B210, the sawtooth constellation different from the LoRaTM constellation and

each constellation plot consists of only sufficient samples to produce a good constellation.
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Figure 5.4: N210 LoRa 125KHz IQ constellation

77



(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.5: B210 1 kHz sawtooth IQ phase
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Figure 5.6: B210 1 kHz sawtooth IQ constellation
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.7: B210 LoRa 125KHz IQ phase
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Figure 5.8: B210 LoRa 125KHz IQ constellation
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.9: B205 1 kHz sawtooth IQ phase
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Figure 5.10: B205 LoRa 125KHz IQ constellation
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(a) 1msps (b) 5msps

(c) 10msps (d) 25msps

Figure 5.11: B205 LoRa 125KHz IQ phase
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Figure 5.12: B205 LoRa 125KHz IQ constellation
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5.5 SDR phase conclusion

A significant number of differences between the N210, B210, and B205 phase plots and constellation

diagrams exist. The number of samples used to create the phase angles between the N210 and B2xx

SDRs are significant. Between 5 k, and 200 k samples are used to create a good sawtooth phase

plot for the N210, while only about 100 are used for the B2xx radios. The differences in scale

could affect the model’s ability to discern differences between trained data from the N series SDR

to validation and test data from the B series SDR and vice versa. Another issue is the difference in

phase angles between sample rates of the B series SDRs. The B series phase angles are not always

properly varying between −2π to 2π when compared to the N series SDR. These differences in phase

angles could also affect the model’s ability to properly discern the correct class when training, since

validation and testing data are not always from the same sample rate or SDR model.

The constellations diagrams between the N series and B series SDRs are notable in a number of

aspects. I expect the constellations to be different between the sawtooth and LoRaTM, but the N

series doesn’t show much difference. The constellation diagrams between the N series and B series

are quite striking. Although the B series constellations better depict my expectations, the N series

indicate a tighter constellation structure. Their are also a notable difference in the constellations

across different sample rates for the B series SDRs. These constellation differences could certainly

affect the CNN classification and could be caused by IQ imbalance, in addition to differences in

how the SDR manages the IQ data across different sample rates.
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Chapter 6

Conclusion

In chapter 1 I presented the problems with modern RF allocation bands and how ISP can help

bring order to this important communication domain. To harness the data in the RF domain, I

established in chapter 2 how to use all the RF domain data and how RF data can be successfully

manipulated using informatics techniques. Following this, in chapter 3, I validated the use of all

the information contained in the four-channel tensor to provide better classification accuracy versus

only using the spectrogram magnitude. In chapter 4, my RF classification method was used to train

a CNN system to successfully classify RF signals from trained and un-trained sample rates using

multiple SDR hardware models to improve classifier generalization. Next, in chapter 5, I showed

that a robust classifier can benefit from multiple sample rates and multiple SDR hardware because

of differences in hardware time domain jitter and frequency domain phase noise. In conclusion, I

have demonstrated that an open-source RF domain classification system can provide robust physical

layer multi-sample rate and multi-device classification.
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