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In this thesis, I introduce a data-driven algorithm for estimating and applying pitch cor-

rections to a vocal performance recording. Existing pitch correction systems usually map the
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tation enables the algorithm to apply to a wide variety of musical traditions, regardless of the
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The algorithm uses both the vocal and backing tracks as references for its pitch correction

predictions. It is built around a deep neural network model, which includes convolutional

layers for detecting patterns in the audio signals, and recurrent layers for processing the song

sequentially. The model is trained on karaoke performances selected for accuracy. It is exposed

both to incorrect intonation, for which it learns a correction, and intentional pitch variation,

which it learns to preserve.

This thesis includes arguments for favoring a data-driven approach to digital music pro-

cessing over a model-based approach, prioritizing expressivity over control and interpretabil-

ity. The proposed algorithm shows promising performance on real-world singing.

Minje Kim, Ph.D.

Daniel J. McDonald, Ph.D.

Christopher Raphael, Ph.D.

Donald S. Williamson, Ph.D.

vi



TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges in data-driven automatic pitch correction . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Musical intonation: building on Auto-Tune and millenia of music history . . 9

2.1 What is musical intonation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Measuring musical intonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Ratio-based measures of intonation . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Empirically derived conceptualization of intonation . . . . . . . . . . . . . 13

2.2.3 Outcomes in music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



2.2.4 Conceptualization of intonation in this thesis . . . . . . . . . . . . . . . . 19

2.3 Antares Auto-Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 How does Auto-Tune work? . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Auto-Tune’s ratio-based conceptualization of musical interval . . . . . . . . . . . . 22

2.4.1 Modeling tradeoffs and negative reception . . . . . . . . . . . . . . . . . . 22

2.4.2 Adoption by professional artists and positive reception . . . . . . . . . . . 24

2.5 How millenia of music theory and the design of Auto-Tune inform this thesis . . . 25

Chapter 3: Towards data-driven automatic pitch correction . . . . . . . . . . . . . . . . 26

3.1 Music representation in software . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Model-driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Auto-Tune as a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 The proposed system as a model . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Developing music technology: Control, interpretability, and expressivity . . . . . . 32

3.4.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.4 Setting priorities in the proposed system . . . . . . . . . . . . . . . . . . . 35

3.4.5 What happens when the pitch correction fails? . . . . . . . . . . . . . . . . 37

3.4.6 The usefulness of deep learning for automatic pitch correction . . . . . . . 38

Chapter 4: The data-driven pitch correction algorithm . . . . . . . . . . . . . . . . . . 40

viii



4.1 Open-source repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Music information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Audio signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 The proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Note-by-note processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Neural network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Post processing versus real time . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.5 The detuning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.6 Data pre-processing details . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Experimental configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Training setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5: “Intonation”: A dataset of quality vocal performances refined by spectral

clustering on pitch congruence . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Datasets for music research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Automatic pitch deviation analysis . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Data collection and feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



5.4.1 Genre, bias, and related challenges . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Data pre-processing for analysis . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.2 Pitch deviation histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.3 Pitch deviation probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Dataset description and applications . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 6: Effect of deep pitch correction on pitch distribution and on the subjective

listening experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Experiments on the synthesized test set . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Subjective listening test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 7: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 8: Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Curriculum Vitae

x



LIST OF TABLES

4.1 The proposed network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 The de-tuning Gaussian Hidden Markov Model (HMM) parameters fitted to the
MIR-1K dataset. The first column shows the means, or hidden states, and the
second column shows the standard deviations. The final two columns show the start
and transition probabilities. All parameters are in cents, a logarithmic measure, and
rounded to the nearest integer, except for zeros, which are set to 0.1 to show that
no transition had zero probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The Note parsing column indicates whether the note boundaries were assigned
based on silent Probabilistic YIN (pYIN) frames or based on state changes in
the HMM assigning a scale degree to each frame. The De-tuning column indi-
cates whether the de-tuning distribution was random uniform or sampled from the
HMM trained on MIR-1K. The Extension refers to whether the song-level Gated
Recurrent Unit (GRU) is added to the model architecture. Finally, the Initialization
column provides the distributions used to initialize the parameters, and whether
the feature extraction layers were initialized using pre-trained parameters from the
model without extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Probability estimates of negative versus positive frame-wise deviations of singing
pitch from the equal-tempered Musical Instrument Digital Interface (MIDI) score,
computed using bootstrapping. The analysis was performed within different ranges
of interest. When the deviation is less than 100 cents, the singer did not sing a
different note. We found a particularly strong tendency towards negative deviations
in the range of 100 to 300 cents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Description of the audio samples from MIR-1K used for the subjective listening
test, and their diverse characteristics that test the program under varying conditions 77

6.2 Baseline versus original. Some listeners provided comments. These are summa-
rized in this table, and randomized label names are replaced with the actual labels,
unknown to the listeners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



6.3 Corrected versus original. Some listeners provided comments. These are summa-
rized in this table, and randomized label names are replaced with the actual labels,
unknown to the listeners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



LIST OF FIGURES

1.1 Pitch correction algorithm overview. The algorithm requires audio for the vocals
and backing track (also called accompaniment) on separate audio tracks. It applies
the constant-Q transform to the audio to generate time-frequency representations.
It then splits the data into individual notes based on the measured singing fre-
quency. It discards silent sections in the audio. Next, for every note, it predicts
a pitch correction shift using a deep neural network (DNN) trained on real-world
singing examples. Finally, in the post processing phase, it applies the shifts to ev-
ery note and combines them along with silent sections to construct the corrected
track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Program overview. The program processes one note at a time, and predicts a con-
stant shift for the note’s duration. The proposed Deep Neural Network (DNN)
architecture includes convolutional layers for feature extraction followed by GRUs
for sequential processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Constant-Q Transform (CQT) of the vocals and backing tracks computed using
Librosa [64]. The plot focuses in on frequency bins 300 through 700 out of 1024
for better visibility. (a) shows the CQT of the backing track. The horizontal lines
are due to constant pitches, which indicates that a chord is being played. (b) and
(c) show the CQT of the vocals before and after the correction, respectively. (d)
and (e) show the superposed vocals and backing track before and after corrections.
The CQTs are binarized by the mean of their amplitude, which makes the louder
components stand out for visibility (see Section 4.3.6). In this example, we see that
the correction shifted the pitch of the vocals up and centered it around the desired
harmonics of the backing track (red circles). . . . . . . . . . . . . . . . . . . . . . 45

4.3 Training technique for the model using synthesized in tune versus out-of-tune data
pairs. The program first detunes the original singing. As a result, the measured
pitch moves from the purple line to the red line. The deep neural network takes as
input the detuned signal, and predicts shifts that will restore the original pitch. The
result of the predicted corrections is in green. . . . . . . . . . . . . . . . . . . . . 46

xiii



4.4 Model architecture with extension layer. A GRU sequentially processes the outputs
for each note from the original DNN and is followed by a linear layer that outputs
note-wise shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Note de-tuning Hidden Markov Model. The approximate de-tuning amount per
note is defined in the hidden states. The exact de-tuning is sampled from the state
using a Gaussian distribution,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Comparison of three different note boundary detection outputs for an excerpt from
Attention by Charlie Puth. The purple line shows the pYIN frame-wise pitch con-
tour. The vertical lines show the note boundaries. The first and second approaches
use the frame-wise pYIN pitch output. The first approach assigns note bound-
aries at the beginnings and ends of unvoiced sections. The second approach fits a
Gaussian HMM to the pitch contour, and uses the hidden state sequence of equal-
tempered scale frequencies along with unvoiced frames to assign boundaries. The
third one uses the pYIN note-wise output. In this example, the unvoiced frame
approach fails to split some legato passages into individual notes and the pYIN
note approach is the most sensitive, assigning the largest number of notes. Some-
times this is musically relevant: for example, the lyrics in the three-step descending
sequence around frames 300 to 400 are “knew-that-I, knew-that-I, knew-that-I”,
splitting each step into three musical events. The pYIN note detection detects
these boundaries. However, it misses some notes—for example, the first note after
frame 600—and its boundaries are not exactly aligned with the frames that switch
between being voiced and unvoiced—for example, in multiple locations between
frames 800 and 900. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Singing pitch analysis of sample performances with aligned MIDI. Two are in the
clusters selected for “Intonation” dataset (top), two in the remaining clusters (bot-
tom). Much can be learned about the individual performances. The top two appear
more tightly aligned to the expected pitch, though the second plot contains harmo-
nization at a major third below the musical score. The vibrato in the first plot is
particularly smooth, a sign of an advanced singer. The third plot shows frequent
deviation from the score, while the fourth shows deviation at the beginning and the
end but accuracy in the middle, along with a smooth vibrato. Still, it is difficult
visually determine from this data format whether a performance sounds in tune. . . 61

5.2 Global histograms of singing pitch deviations from the expected MIDI pitch in
cents summed over 4702 performances in the “Intonation” dataset and 4702 in the
remaining clusters. The plot is truncated at the top for readability. Scaled log
histograms make more noticeable the small peaks at 1200 cents in both directions,
due to octave deviations, common among singers. There is also, interestingly, a
larger number of deviations between 100 and 300 cents in the negative direction
than in the positive direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiv



5.3 Comparison of positive and negative deviation counts for cents ranging from 1 to
100 (omitting 0) for both datasets. In both groups, negative deviations are more
common than positive ones. The “Intonation” dataset deviations are more concen-
trated around zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Data pre-processing steps for two example performances. The blue performance
was selected for the “Intonation” dataset and the red performance was not. The
first plot shows the frame-wise differences in cents between the measured singing
pitch and equal-tempered MIDI score. We computed the absolute values of these
differences and discarded those whose deviation was larger than 200 cents. The
second plot shows random samples of 10,000 from the frame-wise difference lists,
sorted by distance. The blue curve shows less deviation from the expected pitch
than the red. The third plot shows 31 quantiles summarizing the curve in the second
plot in a lower dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Validation losses for the respective configurations. The subtitle refers, first, to the
note parsing technique, second, to the de-tuning technique, and then whether the
model includes the song-level GRU extension layer and whether the model was
initialized using pre-trained weights. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Pitch deviation histograms of the synthesized test data before and after corrections.
Input data de-tuned using a random uniform distribution was more spread than the
data de-tuned using the HMM. The third output histogram, “Silence-HMM” stands
out as being the most symmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Pitch deviation histograms of the real-world MIR-1K data before and after correc-
tions. The third output histogram, “Silence-HMM”, again stands out as being the
most symmetric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Pitch deviation histograms of various datasets. The first row displays artificially
de-tuned training data. Note that it appears quite similar to the MIR-1K real-world
data before corretions, shown in the bottom left subplot. The left subplot in the
middle row shows the distribution of the Intonation ground truth. This resem-
bles the histogram of the MIR-1K data after corrections using the “Silence-HMM”
model, shown in the bottom right subplot. The middle-right subplot shows the
distribution of a small, professional dataset. It looks strikingly different from the rest. 75

6.5 Example of the baseline algorithm’s corrections. The algorithm determines note
boundaries in the same way as the selected model, assigning them where silence
occurs. It computes the median of each note, and shifts it so that its new median is
the nearest equal-tempered scale degree. . . . . . . . . . . . . . . . . . . . . . . . 76

xv



CHAPTER 1

INTRODUCTION

Digital music builds on a rich music tradition in the acoustic realm, but also differs from it by

nature: Instead of directly reaching our ears, digital music first needs to be represented as data that

a computer can process. Our listening experience depends on the quality of the representation. De-

sign and engineering decisions lie behind the representation, from the sound wave itself—stored

as a sequence of numbers—to musical structure, including melody, harmony, and rhythm. In this

thesis, I introduce an automatic pitch correction algorithm for singing voice. The pitch representa-

tion in the algorithm is designed to capture the complex way we experience pitch and manipulate

it when singing. This thesis work builds on studies of how physical measures of pitch, such as

frequency and timbre, map to what we hear through a complex psychoacoustic process influenced

by our musical upbringing. This complex process results in us either considering a note to be “in

tune” or not.

Music making with family, friends, and the wider community is one of the universally enjoyed

activities across the world. In recent years, digital options have emerged in applications such as

Smule, Spotify, Cadenza, YouTube, and TikTok. These enable people to share their recordings

with their peers, and provide tools for collaboration and audio processing that only exist in the

digital realm. These apps use post-processing, which involves editing the track after it has been

recorded to improve the quality. Automatic pitch correction to make a performance sound in tune

is one type of post-processing.

Why not just leave the recording unaltered? As anyone who has tried to photograph a beautiful

landscape has experienced, capturing the natural colors, beauty, and atmosphere of a scene is

challenging. Image post-processing might actually make the outcome better capture reality or,

alternatively, bring to the viewer’s attention aspects of the landscape that could otherwise be easily

missed. In the same way, post-processing of audio can enhance the listening experience: The
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listener is hearing the performance through the recording and playback pipeline, outside of the

original acoustic setting. A performance heard recorded versus live can be a substantially different

musical experience.

The process of producing a digital recording can range from professional to recreational. Pro-

fessional digital recording involves the use of professional audio-editing software, high-end mi-

crophones, and recording spaces with good acoustics, all of which require considerable time and

resources. It results in a polished and high-quality result. The recreational kind often involves mul-

tipurpose recording devices such as smartphones, and typically involves little in the way of time

and resources. Music apps can serve as a platform for recreational music making. Apps can pro-

vide a meaningful musical opportunity. Users of Smule, Inc, a singing app, have reported taking

a ten-minute break in their workday to sing, and shared with the company how that short singing

break brings them joy and reduces their stress. Without being willing to invest time and money in

editing their recording or having the resources or training to do so, recreational musicians may still

benefit from using post-processing tools that are built into the app. These apply automatic pitch

correction or add effects such as reverb. Post-processing tools do not replace professional audio

editing, but are recognized as improving the quality of the recording with remarkably little effort or

cost. Although post-processing tools do not make a recording sound professional, they can make

it more pleasing to a listener. A parallel can be seen when a person uses a grammar-checker to

improve the quality of their writing, even when writing simple text such as an email. The ability

of the grammar-checker to remove minor errors produces a more polished result, which can make

a big difference, especially given the high stakes of sharing content in a recorded format.

1.1 Challenges in data-driven automatic pitch correction

I illustrate the complexity of the task of automatic pitch correction by describing the difference

between a musical score and a performance. In a musical score, a melody for singing voice is typ-

ically notated as a sequence of notes of discretized lengths and pre-defined pitches. The simplicity

of the symbolic representation leaves considerable scope for variation in the singer’s interpreta-
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Figure 1.1: Pitch correction algorithm overview. The algorithm requires audio for the vocals
and backing track (also called accompaniment) on separate audio tracks. It applies the constant-
Q transform to the audio to generate time-frequency representations. It then splits the data into
individual notes based on the measured singing frequency. It discards silent sections in the audio.
Next, for every note, it predicts a pitch correction shift using a deep neural network (DNN) trained
on real-world singing examples. Finally, in the post processing phase, it applies the shifts to every
note and combines them along with silent sections to construct the corrected track.

tion. Even when a vocalist follows the general contour of the score, the singing voice actually

varies continuously due to expressive gestures such as pitch bending, vibrato, and other variations

coming from musical tradition, personal preference, and randomness. A singer’s deviation from

the symbolic score is sometimes large, as described in Chapter 2.

In existing commercial systems for automatic pitch correction, vocal track notes are typically

shifted to be centered around pitches in a user-defined score, or mapped to the closest pitch among

the twelve equal-tempered scale degrees (e.g., [1]). This approach reliably corrects out-of-tune

singing. The downside is that it also removes intentional nuances whenever pitch deviates from

the symbolic score.

The algorithm in this thesis represents pitch as a continuous parameter instead of a discretized
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value. This continuous representation enables it to preserve the nuanced variations of sung pitch

while applying corrections. Furthermore, the algorithm makes its predictions purely on the audio

content of the vocals and backing track (also called accompaniment), without relying on a musical

score. This leaves room for the singer to sing a different melody, as is common when harmonizing

or improvising.

Making a singer’s pitch track sound more in tune without relying on a symbolic score is not

straightforward. The algorithm must behave like a human listener with a moderate level of musical

understanding. Such a listener can often detect the out-of-tune notes and predict the amount and

direction of the pitch shift required to bring the note back in tune, all without requiring access to

the score. The algorithm in this thesis uses a Deep Neural Network (DNN) to make predictions.

The DNN is trained on real-world singing examples, from which it learns patterns of intonation

that help it make accurate predictions.

Training data for automatic pitch correction is hard to find. The first challenge involves col-

lecting examples of in-tune singing. Publicly available datasets typically mix performances of all

levels of singing, in tune and out of tune. The in-tune recordings need to be extracted to form a

smaller training dataset. The second challenge—if training the DNN in a supervised manner—is

to design data pairs where the input is out of tune, the target is in tune, but the signals are otherwise

identical. Such pairs don’t occur naturally, making data synthesis a viable approach. Synthesizing

out-of-tune singing from an in-tune performance, however, requires defining a de-tuning algorithm,

which is a challenge in itself. Chapters 2 and 3 illustrate the difficulty of representing pitch as a set

of features that can be measured and manipulated. Chapter 4 delves into the numerous decisions

around feature design.

1.2 Overview

The algorithm introduced in this thesis predicts pitch corrections of solo singing performances in a

data-driven manner. It predicts note-wise pitch shifts from the relationship between the respective

spectrograms of the singing and backing track. It outputs the amount and direction of the pitch
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shift expected to bring the note back in tune. The pitch shift predictions are constant by note, and

continuous in frequency. In post-processing, the algorithm applies the shifts to each note, as shown

in Figure 4.3. It does not require access to the musical score, which makes it usable even when the

singer improvises or harmonizes in a performance.

The algorithm is designed to utilize information similarly to the human ear, basing corrections

on information found in the audio, such as the level of perceived musical harmony and context

in time. It is a DNN trained on patterns in real-world singing examples from a dataset of 4,702

amateur karaoke performances selected for good intonation [2]. The model is trained on both

incorrect intonation, for which it learns a correction, and intentional pitch variation, which it learns

to preserve. The design of the algorithm is based on the empirically derived conceptualization of

musical intonation described in Section 2.2.2. Given its flexibility and preservation of nuance, it is

adaptable to different musical traditions, regardless of the scales and pitch-related practices used

in these traditions. It is a step towards a model-free automatic pitch correction system, the use of

which is justified in Chapter 3.

The proposed DNN architecture includes convolutional layers for feature extraction followed

by Gated Recurrent Units (GRUs) for sequential processing. The algorithm shows promising per-

formance on the real-world score-free singing pitch correction task. To the best of my knowledge,

this is the first data-driven approach to correcting singing voice pitch based on the harmonic content

of the backing track.

1.3 Scope and limitations

The algorithm—designed for amateur singing—is intended for situations where a singer wishes

to apply simple post-processing—for example, on their smartphone—without using professional

audio-editing software. It requires that the vocals and backing track be separate, and for the vocals

to be monophonic and free of noise. The current algorithm is limited to post-processing: Adapting

it for real-time processing is left to future work.

The assumptions on which the algorithm is based are strong and might not be accurate. First,
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the backing track is assumed to have clearly identifiable pitches—a chord progression—that serves

as a reference for the vocals. Second, only past and current musical content is needed for making

a prediction. the DNN processes a performance as a sequence in time, and does not access data

from the future. Third, each note is corrected by a constant amount, and this is assumed to produce

an accurate sounding result. Fourth, the dataset used to train the algorithm is assumed to be in-

tune enough for this prototype, despite consisting of amateur singing, which sounds different from

professional singing.

1.4 Contributions

Contributions in this thesis include:

• A data-driven algorithm for predicting pitch corrections directly based on the time-frequency

content of the vocals and backing tracks instead of based on a symbolic music score.

• Continuous representation of pitch, which enables the algorithm to preserve pitch nuances,

and to incorporate concepts from psychoacoustics, physics of sound, and cultural practices

regarding musical intonation.

• A technique for generating pairs of training examples where one is in tune and the other is

out of tune. This involves de-tuning in-tune performances to synthesize out-of-tune singing.

De-tuning is based on random sampling from a HMM [3].

• Adaptability to any musical culture for which training data is available.

• An adaptation of a DNN architecture for pitch detection—including convolutional and Gated

Recurrent Unit [4] layers—to the task of automatic pitch correction. The convolutional lay-

ers are used to extract features, while the GRU layers process the music signal sequentially.

• The “Intonation” dataset of in-tune singing performances, including the time-frequency mag-

nitude transformation of the backing tracks and other metadata.
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• A commentary on transforming this algorithm into a system that is usable in practice, even

given the fact that not all of its corrections will result in higher accuracy.

• A small-scale subjective listening test, where the deep pitch correction network is shown to

provide convincing adjustments when the backing track includes clear reference pitches.

1.5 Outline

Chapter 2 provides a musical background for the algorithm design, placing its development in

the context of the discussion of musical intonation that has occurred over millenia. It surveys

two standard conceptualizations of musical intonation, relevant definitions, and describes musical

cultures that use intonation in different ways. This chapter also describes Antares Auto-Tune, one

of the music-industry standards for pitch correction, discussing its advantages and disadvantages,

and what can be learned from it when developing a data-driven pitch-correction algorithm.

Chapter 3 discusses the technical background. It provides an overview of music representation

in software and compares model-driven approaches to data-driven approaches, including how they

affect control, interpretability, and expressivity of the programs. It concludes with reasons behind

the choice of a deep neural network for the task of automatic pitch correction.

Chapter 4 provides a technical presentation of the proposed algorithm. It starts with an

overview of related work in music information retrieval, deep learning, and audio signal process-

ing. It then describes in detail the proposed algorithm. This includes note boundary detection

techniques, pitch de-tuning techniques, model architecture choices, and the experimental configu-

ration.

Chapter 5 describes how we collected the “Intonation” dataset and details about the dataset.

It indicates how the clustering technique used to collect the data can be used to generate datasets

for other tasks where the target is subjective—as it is in the case of musical intonation. It also

describes shortcomings related to genre bias in the current dataset, and how this issue can be fixed

in future work.

Chapter 6 describes results both on the synthesized test set and the real-world dataset. It in-
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cludes a comparison of the results using pitch deviation histograms. It also includes a comparison

of the pitch behavior in the various datasets used in this thesis work. The quantitative analysis is

followed by a qualitative listening test that provides insights into the way the model works. The

analysis indicates that the proposed approach is more reliable than a conceptually and compu-

tationally simple baseline. It also indicates that the proposed approach effectively utilizes pitch

content in the backing track.

Chapter 7 concludes the thesis. It summarizes the proposed automatic pitch correction algo-

rithm, describes its current limitations, and how these might be addressed in future work. It places

this thesis work into the broader context of music information retrieval.
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CHAPTER 2

MUSICAL INTONATION: BUILDING ON AUTO-TUNE AND MILLENIA OF MUSIC

HISTORY

Theories of musical intonation serve as a background to the proposed automatic pitch correction

algorithm. This chapter starts with definitions of intonation and related terms such as frequency,

pitch, and interval. It then introduces two standard conceptualizations of musical intonation. The

first is based on precise mathematical formulas involving ratios, while the second is based on em-

pirical observations, involving complex interactions between physics of sound, psychoacoustics,

and musical culture. The relative merits of these two conceptualizations have been debated for

millenia. The selection of conceptualization has profound implications for how a musical culture

develops, as can be seen by exploring European classical music, Indian Raga, Blues, and 21st cen-

tury pop music. This chapter then uses Antares Auto-Tune, one of the music industry standards for

pitch correction—and the first of its kind—to exemplify the application of ratio-based intonation.

It relates the underlying assumptions about singing in tune that informed its design to the way it is

used by musicians, both amateur and professional. Auto-Tune has emerged as being suitable for

some musical styles—even creating opportunities for new ways of making music—but not suitable

for others. A review of how Auto-Tune is used—sometimes in surprising ways—and some of its

less positive results provides insight into what an empirical conceptualization of intonation can

contribute to the musicality of automatic pitch correction.

2.1 What is musical intonation?

Discussing the concept of musical intonation requires that we first define frequency, period, and

pitch. Hass describes these concepts in the context of acoustics [5].

Some sound waves are periodic, in that the change from equilibrium (average at-
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mospheric pressure) to maximum compression to maximum rarefaction back to equi-

librium is repetitive. The ’round trip’ back to the starting point just described is called

a cycle. [5, Ch. 1, Sec. 4–5]

The common measurement unit for frequency is in cycles per second or simply cps. One hertz

equals 1 cycle per second. Our focus here will be periodic sound waves: They are the ones that

cause a listener to hear a pitch (like a singing voice) instead of a noise (like consonants in speech

or ocean waves).

Parncutt et al. define pitch by comparing it to frequency:

In general, [pitch] is not the same as [frequency]. We use the term pitch in the

psycho-acoustic sense of the experience of how high or low a tone sounds. It is a

purely subjective parameter—an experience of the listener that can depend on several

different physical parameters.” [6, p. 477]

The Cambridge Online Dictionaries (6/12/2020) define musical intonation as the degree to

which the notes of a piece of music are played or sung exactly in tune, e.g., “The violinist had

good intonation, and a wonderful pure tone.” It defines in tune as: singing or playing notes that are

at the right pitch (= level) or that agree with others being sung or played.

The Dictionaries’ definition implies that musical intonation can be experienced only when two

or more tones are played together, either simultaneously or in succession. The relationship between

two tones is referred to as an interval.

Unlike the definition above, which focuses on the listeners’ perspective, Parncutt et al. define

intonation by musicians’ actions: “the real-time adjustment of (fundamental) frequencies in music

performance.” [6, p. 477] They elaborate this definition as it relates to limits of auditory perception,

inharmonicity of musical tones, pitch as a subjective value versus frequency as an objective metric,

and complexity and subjectivity in music.

Precisely and comprehensively defining musical intonation would be challenging. First, the

subjective component makes it difficult to directly measure intonation without feedback from lis-

teners. Second, the relationship between frequency and pitch is complex, as described in section

10



2.2.2. Third, a performer dynamically adjusts intonation over time. In some musical contexts such

as jazz improvisation, a musician can transform locally bad intonation into globally good intona-

tion. Bassist Victor Wooten famously teaches this to students. He uses an exercise where a student

who plays a note that sounds out of key slides it over a half step in either direction, which then

sounds good. “You’re never more than a half step away from a right note,” he says. “It keeps

[the students] from being afraid of being wrong. And if they are wrong, it’s only the note, not

everything else. The music doesn’t have to stop.” [7]

2.2 Measuring musical intonation

Despite being challenging to define precisely, the concept of musical intonation has been the sub-

ject of research and debate for millenia. Developing a way of measuring intervals, or the rela-

tionship between tones, is key to studying intonation. This section introduces two contrasting

conceptualizations: ratio based and empirically derived. My own training is in the culture of West-

ern music, so that is my primary focus. I will, however, also make a brief foray into intonation

systems from other traditions to underline the far-reaching possibilities that emerge from a richer

understanding of intonation and its implications for tools like autotuning.

2.2.1 Ratio-based measures of intonation

A natural approach to measuring an interval is to calculate the ratio between the two fundamental

frequencies. Fundamental frequency is the lowest frequency of the waveform. Use of fundamental

frequency is an important distinction in natural waveforms, which are usually periodic at many dif-

ferent values. Fundamental frequency often roughly corresponds to the pitch the listener perceives,

as the next section describes in more detail.

Pythagorean and just intonation are closely related ratio-based systems that define intervals as

in tune, or pure, when the length of their shared periodicity is minimized. An octave has a ratio

of 2:1, and a fifth a ratio of 3:2, making these two intervals the most pure after the unison, which

has a ratio of 1:1. Pythagorean intonation is attributed by legend to the mathematician Pythagoras
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Figure 2.1: Illustrations of Pythagoras’ technique using a monochord to generate musical intervals.
Pressing down a string at specific distances produces substrings with lengths whose ratios to the
full string length are 2:1 for an octave, 3:2 for a fifth, etc... The intervals can be heard by plucking
the string. The mathematician is depicted in (a). The image was found in a book by Middle
Ages music theorist Franchino Gaffurio (1492–1480?) [8]. (b) is a modern-day replica of the
monochord instrument [9]. (c) shows the exact locations where the string should be pressed to
produce an octave, a perfect fifth, and a perfect fourth.

(sixth century B.C.), along with the invention of the monochord, a one-stringed instrument used

by Pythagoreans and acoustical scientists up through the Middle Ages [10, Ch. 2, p. 2 and Ch. 4,

p. 42]. Figure 2.1 shows depictions of Pythagoras using a monochord, a modern-day replica of a

monochord, and a chart showing how to produce pure musical intervals.

In Pythagorean intonation, every interval is constructed from octaves and fifths, and is formu-

lated as 2 ∗ ∗a3 ∗ ∗b : 1, where a and b are whole numbers. This leads to the concern of large ratios

when using intervals beyond the fifth and the fourth. For example, a major third is 81/64 : 1. Just

intonation addresses these concerns by adding powers of 5. This enables a smaller ratio for the

major third, namely, 4/5 [6].
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Just intonation was used in Europe during the Renaissance, as shown in writings by composer

and music theorist Gioseffo Zarlino’s Istitutioni harmoniche (1558). Zarlino was an advocate of

using as many pure intervals as possible [11]. In fact, when music is complex enough that there

are multiple intervals occurring at the same time—for example, in polyphonic music—it is often

mathematically impossible to make all intervals pure. Keeping intervals pure becomes even more

difficult on fixed-pitch instruments such as keyboards, where it is not possible to adjust a tone’s

frequency based on the interval that is being played. Zarlino defended Just intonation against

another tuning system—equal temperament—that was advocated for by other theorists such as

Franchino Gafurius (1451-1524) and Faber Stapulensis (1455-1537). Equal temperament involved

replacing pure intervals with equally spaced ones, though the ratio between them is irrational,

approaching 2
n
12 , where n is a whole number [11]. They represented a practical compromise that

often sounded quite good. The equal-tempered scale became more established in the late 18th

century [12].

In contemporary Western music, Pythagorean, Just, and Equal-tempered scales remain promi-

nent. The Equal-tempered scale is commonly used for tuning fixed-pitch instruments, but Pythagorean

and Just systems are commonly taught to musicians who play continuous-pitched instruments such

as violin or who sing. New understanding of the physics of sound provides incentive to use pure

intervals. Pitched waveforms are represented as sine tones at the fundamental frequencies. Inter-

vals are represented as their sums. Small-integer ratios minimize roughness and beats: periodic

oscillations in amplitude caused by constructive and destructive interference of the signals, which

are considered undesirable.

2.2.2 Empirically derived conceptualization of intonation

An alternative to the ratio-based conceptualization of musical intonation, as old as its counterpart,

is the empirical approach. Parncutt et al. refer to Aristoxenus’ three books entitled “Elements of

Harmony”, where he

argued on the basis of musical experience and intuition that the basic elements
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of musical structure—intervals, scales, tuning, melody—do not depend on arithmetic

proportions, as the Pythagoreans claimed, but on what we today would call auditory

psychology: processes of auditory perception, cognition, memory, and recall. To un-

derstand music, we have to perceive it. To understand the musical effect or function of

an interval, we have to listen to it, not make abstract calculations. To understand how

melodies work, we have to perceive, remember, and reproduce them. Musicians are

not aware of ratios as they perform melodies. Interval sizes vary on a continuous scale

and do not generally correspond to mathematically idealized ratios [6, p. 475].

Parncutt et al. argue in favor of the empirical approach. This section summarizes their key

arguments.

First, studies measuring interval sizes in Western tonal musical performances on continous-

pitch instruments such as voice or violin find much variety in musical interval sizes both above

and below the ratio-based and equal-tempered intervals. For example, Devaney et al. find such

deviations in polyphonic choral music performed by professional-level musicians [13]. More gen-

erally, studies tend to report normal, unimodal distributions around the twelve equal divisions of

the octave. The octave that is divided into twelve is slightly larger than 2:1. The theoretical Just

and Pythagorean variants are found to lie well within the distributions. The studies also show that

performers tend to stretch larger intervals, compress smaller intervals, and play sharper if they are

soloists. Researchers hypothesize that performers might exaggerate intonation patters for stylistic

purposes.

Second, physical, fundamental frequency and perceived pitch differ most of the time. One

reason for this is nonlinearity in the cochlea’s spectrum analysis. However, perceived pitch also

changes based on intensity, register, timbre, and masking effects when multiple sounds are played

simultaneously. Perceived pitch can differ from frequency as much as two semitones, where one

semitone is a twelth of an octave.

Third, rich timbres, inharmonicity—the fact that the overtone frequencies are often not exact

integer ratios of the fundamental frequency—and randomization of phase via overlapping of the
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direct sound and its reflections, make most beats and roughness inaudible in practice.

Fourth, there are physical limits to how precisely the human auditory system can detect pitch,

for example, if a note is short. Physical limits also apply to how precise a performer can be.

Fifth, a performer’s pitch can drift over time, either on purpose or through random variation.

This means that the ratio between frequencies is changing over time, not locked into a specific

value.

Parncutt et al. conclude that

[m]usical intervals are not ratios, nor are they magical mathematical entities. They

are learned, approximate, perceptual distances. They emerge from a multigenerational

perceptual-historical process, mediated by the physical properties of musical tones and

the physiological and psychological properties and limitations of the human auditory

system.

2.2.3 Outcomes in music

The conceptualizations of musical intonation described above played an significant role in form-

ing musical language and conventions. This section provides a few examples of how musicians’

conceptualization of intonation led them to compose and perform music in a certain way. It is

by no means comprehensive, but serves as background for considering how the design of music

technology might affect what kind of music its users are able to make with it or will choose to

make.

Ancient Greek philosophy as a basis for Western tonality

The Ancient Greek concept of pure intervals together with musical-event abstraction formed the

basis of Western Classical tonality. Burkholder et al. describe how “[f]or Pythagoras and his

followers, numbers were the key to the universe, and music was inseparable from numbers.” Pure

intervals were linked to harmonia, the unification of parts in an orderly whole.
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Through this flexible concept [...] Greek writers perceived music as a reflection of

the order of the universe. [14, Ch. 1, p. 13]

Burkholder et al. describe how the history of music in medieval Europe is built on these

concepts. Music in the church in medieval Europe was influenced by Greek philosophy in music

theory. The church adopted the concept of perfect intervals relating to God [14, Ch. 2, p. 22]. In

Gregorian chant, a parallel organum consists of a principal voice chanting the main melody, and

of an organal voice that moves in exact parallel motion a fifth below. The Fifth was considered

consonant, perfect, and beautiful, and superior to other intervals. The very simple structure of

parallel fifths, however, led singers to innovate by experimenting with other intervals and breaking

from perfect parallel motion. This move away from exact parallel motion opened the door to

polyphony, which grew more complex over time and formed the basis of Western tonal harmony

[14, Ch. 5, p. 86].

Burkholder et al. also describe how Aristoxenus, in his Harmonic Elements,

distinguishes between continuous movement of the voice, gliding up and down in

speech, and diastematic [...] movement, in which the voice moved between sustained

pitches separated by a discrete intervals. A melody consists of a series of notes, each

on a single pitch; an interval is formed between two notes of different pitch; and a

scale is a series of three or more different pitches in ascending or descending order.

Such seemingly simple definitions established a firm basis for Greek music and all

later music theory. [14, Ch. 1, p. 15]

Both the restriction of musical intervals according to Pythagoras’ conceptualization of inter-

vals as ratios and the abstraction of pitch variations into notes according to Aristoxenus were

simple conceptualizations of complex musical events. This simplification led to the ability to build

complex harmonic structures and polyphony such as one finds in Beethoven’s symphonies from

a discrete set of musical elements. The equal-tempered scale was a further simplification of the

elements, sacrificing small pitch nuances to enable increasingly complex harmonic modulations.
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Classical Indian theory

Classical Western Tonality can be contrasted to musical cultures that prioritize nuances in pitch

and rhythm over harmonic modulations, choosing to use a more complex set of musical elements.

Classical Indian theory provides one such example.

Ramanna writes about Ragas, or scales:

In principle, an octave can be divided into any number of parts, but musical value

of a raga restricts these to a maximum of only seven out of altogether 22 intervals.

[. . . ] The frequency ratios of the Swaras (notes) play the most important part in the

creation of a raga or a scale. [15, p. 897]

Classical Indian music theory varies by region. Ramanna writes about the Venkatamakhin scheme,

where

the [. . . ] octave is divided into 7 Swaras of different intervals in 72 different

ways. The 72 combinations [form] the basic Ragas from which other Ragas can be

recognized. Though some appear identical, they differ in the way they are played.[15,

p. 898] [...] The change of tonic in a piece of Karnatic music is strictly forbidden.

This has, as, perhaps, come about due to the fact that any change of tonic requires a

retuning of all the notes in a non-even temperament system. [15, p. 899]

Arnold, writing from a Western perspective, proposes that

La théorie musicale ancienne de l’Inde, exposée integralement dans les premiers

traités sanscrits sur la musique, et qui s’intéresse à la notion de consonance, aux

échelles musicales et à leurs arrangements systématiques préservant les différences

enharmoniques entre les positions tonales des notes, constitue la formulation la plus

incisive du système d’intonation juste qui ait jamais été proposée. [Ancient Indian mu-

sic theory, integrally formulated in the first Sanscrit treatises on music, that focuses on

concepts of consonance, musical scales and their systematic arrangements preserving

17



enharmonic differences between the notes’ tonal positions, constitutes the most inci-

sive formulation of the Just intonation that has ever been proposed.] [my translation

from French 16, p. 11].

Blues

Blues is a musical genre developed by African Americans in the early 20th century. Blues became

by the 1960s one of the most important influences on popular music in the United States [17].

Palmer writes that “[t]he African music from which the blues ultimately derived came to what is

now the Southern United States with the first African slaves. These Africans had belonged to a

number of different tribal and linguistic groups, each of which had its own musical traditions.”

[18, p. 25] Some traditions had for many centuries had contact with Berber and Arab cultures

in the North of the Saharan desert. The vocal music in these areas reflected the Middle East’s

tendency for long, tortuous melodic lines and formal solo singing. In other Sub-Saharan cultures,

music tended to consist of group singing in call and response form with multiple overlapping

melodies and percussion orchestras playing dazzlingly complex polyrhythms. Harmony was also

used: “Not the periodic resolving Harmony of European music but the parallel Melodies song a

third, fourth, or fifth away from each other.” [18, p. 27] Alper explains that, as slaves were not

allowed to sing music from their homelands, they incorporated their own performance practices

into the musical forms that they were permitted to perform. [19]. Ultimately, what developed

was a set of template chord progressions that were repeated during a piece. Twelve-bar blues is a

widely used template [19]. These chord progressions use periodic resolving harmony of European

music. However, the chord progression is not the main focus of the music, but rather provides

a predictable structure on which instrumentalists and singers can improvise complex melodies or

rhythms, or add personal nuances such as vocal intonation. These aspects of Blues relate closely

to the African style. One nuance Blues is notorious for is intentional “off-key” singing [20], which

is an example of a musical practice that does not fit into the Just or Pythagorean definition of

intonation, but rather in the empirical, cultural conceptualization described by Aristoxenus.
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21st century Pop music

Peres analyzes pop songs released between 2011 and early 2016 using the concept of sonic syntax.

He defines sonic syntax as “a musical grammar that relies on manipulation of timbre, sonic density

(the presence and amplitude of frequencies across the sonic spectrum at any given moment), and

rhythmic intensity.” [21, p. 2] Sections and subsections of a song function as sonic setup, buildup,

or peak. Electronic dance music was the first popular genre to use sonic syntax as the driving

structural feature. Some other recent pop music has adopted a similar syntax, with the consequence

of tonality becoming a secondary component in musical structure. Peres describes how this musical

innovation in pop was based on developments in audio techonology. “Modern technology allows

record producers nearly unlimited control over timbre, which they have used to create new forms

of musical expression.” [21, p. 36] The ability to control timbre and small nuances leaves room for

the development of musical subcultures and expressive nuances. Section 2.3 describes how Auto-

Tune is commonly used in contemporary music as an effect, and can be considered a subculture.

Given the close relationship between intonation and timbre, the question arises of how a differently

designed system might be used by musicians.

2.2.4 Conceptualization of intonation in this thesis

While ratio-based conceptualization of musical intervals has permitted the development and un-

derstanding of sophisticated musical structures, it has neglected subtle but important nuances that

emerge as a key source of musicality in many genres. My objective is to explore how an empir-

ical approach to intonation as described in Section 2.2.2 makes space for reincorporating these

nuances.

The scope of this thesis is limited to intonation of singing voice in relation to a backing track, or

recorded accompaniment. It focuses on intonation as the adjustment of (fundamental) frequencies

in music performance so that the pitches in the voice “agree” with the content in the backing track.

It defines this agreement not via the proximity of the intervals to ratios of fundamental frequencies

belonging to a discrete, pre-defined set, but based on proximity to patterns found in the given
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musical tradition. This approach to working with musical intonation is built on the assumption

that musical traditions have developed based on physical properties of sound and psychoacoustics,

providing either purity or roughness in intervals, which provide a stimulating and expressive sound

to the listeners.

2.3 Antares Auto-Tune

This section summarizes the functionality of Auto-Tune so that we can understand how it models

musical intonation. It starts with a brief history of Auto-Tune for context.

2.3.1 A brief history

For two decades, Antares Auto-Tune has been the world standard for professional pitch correction.

The way that other available tools (e.g., Melodyne) model pitch closely resembles that of Auto-

Tune.

Andy Hildebrand founded Jupiter Systems, which later became Antares Audio Technology, in

1997. He got his PhD in electrical engineering at the University of Illinois, with a focus on signal

processing. His full-time job involved signal processing on seismic data for oil exploration. In an

interview in 2016 with Eckard [22], he wrote:

Around 1995 I was at a trade show, it was me and a couple partners, and we were

with a person who was distributing our products. His wife was there, and we were

talking about what products would be interesting to do next. His wife said, “Well,

Andy, why don’t you make me a box that would have me sing in tune?” I looked

around at the table, and everyone just stared at their lunch plates, they didn’t say a

word.

So I thought, “boy, that’s a lousy idea.” About eight or nine months into the year,

I’d gone to work for a different project, and I came back to that idea, I said, “you know,

that’s pretty straightforward to do, I’ll do that.” At the same trade show a year later I

had producers ripping it out of my hands.
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In the interview, Hildebrand described Western music as having a long history of innovations, and

placed Auto-Tune into that timeline. He expressed surprise at the fact that artists often did not

use the Auto-Tune software as intended, to discretely fix a singer’s pitch, but instead used extreme

settings that produce a robotic effect.

2.3.2 How does Auto-Tune work?

The Auto-Tune Pro Manual [1] describes the program’s functionality in detail. This section focuses

on the features that are relevant to the thesis. Auto-Tune features two modes of operation—Auto

Mode, which is optimized for automatic (optionally, real-time) adjustments, and Graph Mode,

which provides a user interface for precise, manual editing of the pitch and timing. Auto Mode is

most relevant as it is designed to be used in a similar context to the proposed program. Graph Mode

enables the user to be as musically refined and nuanced as they wish to be, but is not automatic and

requires more extensive use of an interface.

Auto-Tune in Auto Mode takes as input a well isolated, monophonic sound source. It contin-

uously adjusts the input pitch towards a target pitch. The target pitch is the closest scale tone as

determined by the current scale settings. The default scale is the chromatic, equal-tempered scale,

but the user can customize the set of notes that is used by specifying the key and the scale. These

can also be automatically detected using MIDI. Furthermore, the user can customize the (fixed)

frequency of every note.

One of the most important parameters in Auto-Tune is the Retune Speed, which controls how

rapidly the pitch correction is applied to the incoming audio. The units are milliseconds. If set

to zero, the pitch is immediately shifted to the target pitch, completely suppressing any vibrato or

deviations in pitch. A setting between 10 and 50 milliseconds is commonly used for producing a

more natural-sounding effect. There is always a tradeoff between remaining close to the scale and

preserving pitch variation. Some additional functionalities help address unwanted artifacts. One is

the Humanize function, which adjusts Retune Speed based on the length of the note. The Retune

Speed is reduced on longer notes to prevent a static pitch, but kept fast for the short notes so that
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the melodic contour is accurate. Another is Flex-Tune. This control helps note transitions be less

abrupt by only applying pitch correction when the performer approaches the target note. Controls

also exist to amplify existing vibrato or to add a synthesized one. Finally, controls exist to preserve

the singer’s formant—their spectral shaping that results from the acoustic resonance of their vocal

tract—or even change it to sound like they have a longer or shorter throat. Voices are put into five

categories: Soprano, Alto/Tenor, Bass, Instrument, Bass Instrument. This categorization also helps

preserve a natural formant.

2.4 Auto-Tune’s ratio-based conceptualization of musical interval

Auto-Tune’s model of pitch originates directly from the ratio conceptualization of intervals intro-

duced in Section 2.2.1. We can conjecture a set of assumptions that underlie the way the program

applies corrections. The first assumption is that perceived pitch and fundamental frequency can

be treated as equivalent. This assumption is evident from the fact that Auto-Tune is described as

a pitch-correction program instead of a fundamental-frequency-correction program [1], meaning

that the corrections apply at the perceptual level. A second assumption is that a note’s proximity

to a small set of frequencies—by default, the twelve notes in the equal-tempered scale—is con-

sidered accurate and, by extension, in tune. A third assumption is that masking and interference

from the backing track does not provide essential information for the pitch corrections: Auto-Tune

only processes the vocal track without referring to the backing track. A fourth assumption is that

the center pitch in every note remains constant throughout, except during note transitions at the

beginning and end. Pitch bending is not explicitly modeled.

2.4.1 Modeling tradeoffs and negative reception

While the simple model behind Auto-Tune makes it possible to design a program that consistently

produces reliable results, it is worth pondering what nuances are lost in the process.1 First, while

1Parncutt et al. recommended that “Computer scientists [...] resist the temptation to develop and implement models
of musical structure based on frequency ratios.” I personally spent much of my early PhD thinking about how such a
model could be developed, but found the task difficult. I synthesized four-part harmony with intervals based on just or
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the concept of intervals as ratios is useful, shifting frequencies so that the ratios of their fundamen-

tal frequencies exactly correspond to the small number of acceptable values removes both desired

and erroneous pitch variations without discrimination. One can argue that, in the process, part of

the social phenomenon that is music is lost: the part of music that consists of a shared auditory

culture, where artists and listeners learn to appreciate specific pitch patterns in specific contexts,

and become part of a musical community. Second, results of psychoacoustics are ignored in favor

of theoretical models of musical intonation that do not correspond to what proficient musicians

have been shown to do in practice. Third, the richness of vocal timbre and of interaction between

the vocals and backing track is ignored.

Fourth, many musical practices and even cultures are left out. Early reception of the Auto-Tune

program showed concern for this reason. As described in Encyclopaedia Britannica,

Critics noted that Auto-Tune had disrupted a long and important history of inten-

tional “off-key” singing, a technique that was particularly prevalent in the blues, a

style that became the backbone of much of popular music in the present day. Blues

singers traditionally played with pitch to express feelings such as longing or yearning,

to punch up a nastier lyric, or to make the lyrics sound more suggestive. For example,

Mick Jagger’s vocals on Sweet Virginia, from the seminal Rolling Stones album Exile

on Main Street, were sung almost totally flat for the purpose of achieving a certain

effect.” [20]

There is also no modeling of Aristoxenus’ diastematic pitch movement, of tortuous melodies as

found in Arab-influenced music, for example, or of “off-key” singing.

A visual analogy

I personally find that it is easy to get lost while discussing aesthetics in the context of music, so I

provide a crude analogy. Human height approximately follows a multimodal normal distribution.

Suppose somebody determines that a good height for a human corresponds to one of these modes,

Pythagorean intonation and only produced dissonant results.
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and develops technology to make all people have one of these heights. The result would be that

many people would appear to be of usual height when encountered individually. Encountering a

group of people of identical height, however, would be startlingly unnatural.

Negative contemporary opinions

Among amateur singers, Auto-Tune used in the fully automatic mode on apps such as Smule

produces a robotic effect not always popular among users. One Smule user writes about a plug-in

that includes Auto-Tune: “Please, whatever you do, don’t use Popstar/Super Pop on a song that is

not meant for [Auto-Tune]. Nothing kills the mood faster [...].” [23] This comment indicates that

the effect is so strong that users omit using it unless a song sounds good with the obviously audible

effect.

Though this thesis focuses on automatic pitch correction for amateur musicians, it is interesting

to consider how professional artists adopted Auto-Tune. As described in more detail in Section

2.4.2, Auto-Tune has become a popular effect among professional singers. One can contrast Miley

Cyrus’s Auto-Tuned voice in Party in the USA at 0:09 and 0:43 to her natural voice The Backyard

Sessions - “Jolene”2. It is not uncommon to hear criticism regarding “excessive use of Auto-Tune”,

e.g., [24], making singing voice sound overly processed.

2.4.2 Adoption by professional artists and positive reception

The initial goal of Auto-Tune was to automatically help people sing more in tune. Sunday Morning

by Maroon 5 or Toxic by Britney Spears both used Auto-Tune in the originally expected manner.

A listener might not notice the effect unless they are aware of it and put some thought into it.

Others turned the settings to extreme values to develop new musical effects. An early example

is Buy U a Drank (Shawty Snappin’) by T-Pain (feat. Yung Joc), starting at 0:02. Recent examples

in R&B include Die For You by The Weeknd, contrasting heavy Auto-Tune at 1:24 with a rich

voice at 0:28, and Work by Rihanna and Drake, at 0:09 and 1:00, where the latter example makes

2https://youtu.be/wOwblaKmyVw, accessed 06/20/2020
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her voice sound like a synthesized instrument. In rap, one example is What The Price by Migos.

It uses different settings in overlapping voices, at 0:17, 0:26, and 0:44. In electropop, Anything

Could Happen by Ellie Goulding uses different settings at 0:00, 0:08, and 2:28. To hear a song

with Auto-Tune versus without, Ke$ha’s Die Young can be heard as the original production or

Deconstructed, with her natural voice. In Electronic Dance Music, Daft Punk’s Harder, Better,

Faster, Stronger uses Auto-Tune at 1:37.

2.5 How millenia of music theory and the design of Auto-Tune inform this thesis

Auto-Tune is an early system for automatic pitch correction. Its invention and commercialization

has led to widespread usage, development of new musical effects used in multiple genres, and

positive and negative reactions. Auto-Tune created new musical opportunities, but also left out

important musical practices and nuances from many traditions. The analysis of the assumptions

behind the design of Auto-Tune and how they affected the way the program works and is used by

musicians provides a useful background for this thesis. The algorithm proposed in this thesis is

designed based on the empirical conceptualization of musical intonation. It strives to incorporate

and even encourage use of subtle pitch nuances. Chapter 3 describes the process of designing a

computer program for automatic pitch correction.

While this chapter has provided ample reason to consider an empirical approach to automatic

pitch correction, or to develop a more complex model of intonation, one question arises. Does

moving towards an empirical representation of musical intonation force us to discard an elegant

mathematical and physical theory? Parncutt et al. argue that this is not the case.

Physics is often thought of as an ‘exact science’ because it is dominated by mathe-

matical theory. But mathematics is also an excellent tool for dealing with inexactness.

Music theory is often considered mathematical and therefore exact. In fact, the quanti-

ties considered in applied mathematics vary along a spectrum from very exact to very

approximate. The number ratios that correspond to musical intervals also lie some-

where along that spectrum.”
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CHAPTER 3

TOWARDS DATA-DRIVEN AUTOMATIC PITCH CORRECTION

The previous chapter provided a musical background for designing an automatic pitch correction

system based on an empirical perspective on musical intonation. This chapter addresses the prac-

tical and technical aspects of implementing such a system. It focuses on the current state of music

and audio representation in software, and on the state of data science with respect to complex

problems such as music.

One choice that needs to be made is how to represent music and audio data in the program.

Should the program process thousands of audio samples per second, or abstractions such as notes?

This chapter provides an overview of recent advancements in computation power and machine

learning that make possible rich music representations.

A second choice that needs to be made is whether to adopt a model driven or a data-driven ap-

proach. This chapter compares the two approaches, and then describes a continuum of approaches

between model driven and data driven. A model-based approach begins from understanding, which

requires abstraction and simplification of the task to make it sufficiently understandable to be mod-

eled. A data-driven approach begins from data and searches for meaningful patterns, without a

guarantee of complete understanding.

This chapter discusses successful examples of both types, showing how they contribute to

greater understanding in audio and related fields. It also considers how a data-driven approach dif-

fers from one that is model driven in the automatic pitch correction context. It relates Pythagorean

and Just ratio-based conceptualizations of musical intonation to a model-driven approach, and

argues that Antares Auto-Tune is model-driven. It then lays out the difficulties inherent in for-

mulating an empirically derived approach. This discussion contributes to the wider theme of the

trade-offs controllability, expressivity, and interpretability in a given program. Trade-offs between

the three are often required. Examples are provided that illustrate how model-driven approaches
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tend to provide more control and interpretability, in contrast to data-driven approaches, which can

be more expressive when applied to complex tasks. This chapter considers how important these

features are in the case of automatic pitch correction and what type of program might be appropri-

ate for the task. It argues for the importance of carefully considering all three features in designing

an automatic pitch correction tool, and sets the stage for the development of such a tool.

3.1 Music representation in software

Technical writer Jaron Lanier wrote a decade ago about the invention of the MIDI:

One day in the early 1980s, a music synthesizer designer named Dave Smith casually

made up a way to represent musical notes. It was called MIDI. His approach conceived

of music from a keyboard player’s point of view. MIDI was made of digital patterns

that represented keyboard events like “key-down” and “key-up”.

That meant it could not describe the curvy, transient expressions a singer or a saxo-

phone player can produce. It could only describe the tile mosaic world of the key-

boardist, not the watercolor world of the violin. But there was no reason for MIDI

to be concerned with the whole of musical expression, since Dave only wanted to

connect some synthesizers together so that you would have a larger palette of sounds

while playing a single keyboard. In spite of its limitations, MIDI became the stan-

dard scheme to represent music in software. Music programs and synthesizers were

designed to work with it, and it quickly proved impractical to change or dispose of all

the software and hardware. MIDI became entrenched, and despite Herculean efforts to

reform it on many occasions by a multi-decade-long parade of powerful international

commercial, academic and professional organizations, it remains so. [25, p. 7]

A decade later, the state of music and audio technology has evolved. While MIDI remains

a common tool, alternative audio technologies such as phase vocoding and deep learning have

become available alternatives. Section 3.4 provides examples of programs that deploy them. These
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technologies make it possible to process audio at the level of the spectrogram frame or sample,

preserving as many nuances as desired. In later sections, I provide examples of such technologies.

Discretization of music as a sequence of events in MIDI also relates discretization of pitch, which

extends to discretization of musical intervals in the ratio conceptualization of musical intonation

discussed in Section 2.2.1. All provide a simple and elegant framework for structuring music, but

risk discarding nuances. The choice of representation is at the discretion of the the programmer or

designer. As described in more detail in later sections and chapters, the automatic pitch correction

system proposed in this thesis combines some MIDI-like discretization with a continuous-valued

pitch shift representation, seeking to retain a reasonable level of controllability and interpretability

while making more space for expressivity.

3.2 Model-driven approaches

A common debate in multiple research areas including audio and music is whether to use a model

driven or a data-driven approach for making predictions. This section explores the model-driven

approach and reviews its advantages and limitations.

When developing a model of musical intonation, one needs to explicitly define a set of variables

that affect how in tune an interval sounds. One also needs to define the function that maps the

variables’ values to pitch correction predictions. One needs to understand the process well enough

to organize the variables and functions, or simplify the process to a level of abstraction where

one is able to organize it. The assumptions and the variables one chooses to include in the model

can stem from one’s place in time and space, and values about the world [26]. In fact, “multiple

models for the same target system do not generally stand in a deductive relationship, as they often

contradict each other.” [27]

One might ask, is a model worth using even though it does not capture the full complexity of

the real world? The Stanford Encyclopedia of Philosophy entry on models in science describes

how

models are vehicles for learning about the world. Significant parts of scientific inves-
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tigation are carried out on models rather than on reality itself because by studying a

model we can discover features of, and ascertain facts about, the system the model

stands for. [...] Learning about a model happens in two places: in the construction of

the model and in its manipulation (Morgan 1999). There are no fixed rules or recipes

for model building and so the very activity of figuring out what fits together, and how,

affords an opportunity to learn about the model. Once the model is built, we do not

learn about its properties by looking at it; we have to use and manipulate the model in

order to elicit its secrets. [27]

Furthermore, the entry describes how models typically provide a distorted or idealized represen-

tation of their targets, or at least one that is only approximately true. Elgin argues that learning

occurs not despite, but because, of models being false [28].

The Encyclopedia entry provides reasons for why models help us organize our knowledge of

the world and confront it with reality. Given this capability, models are useful for building more

sophisticated understanding over time, and can even lead to theory development [27].

Pythagorean and Just conceptualizations of musical intervals as ratios can be formulated as a

model: Good intonation is produced between two notes—when they are played consecutively or

simultaneously and both are audible—by shifting their fundamental frequencies so that their ratio

is one of a set of specified values: 1:1, 2:1, 3:2, etc..., because this minimizes shared period length,

and therefore roughness and beats. This elegant model functions at a high level of abstraction.

For example, it applies to all musical contexts and all timbres. Furthermore, it can be confronted

with reality via empirical studies of musical intonation, leading to scientific knowledge. Finally,

this model has provided the basis for much learning—such as the development of sophisticated

Classical Western tonality—despite the fact that it does not correspond to results of empirical

studies.
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3.2.1 Auto-Tune as a model

Section 2.4 described Auto-Tune in detail through the lens of a ratio-based conceptualization of

musical intervals, making it a model-driven program. In practice, implementing a ratio model is

often mathematically impossible, as described in section 2.2.1. To fix this issue, Auto-Tune moved

from Pythagorean and Just intonation to the equal-tempered scale, a compromise that makes the

model usable in practice, while sacrificing some of the purity of the intervals.

3.2.2 The proposed system as a model

When building a model based on psychoacoustics and on results from empirical studies of intona-

tion, the number of variables increases dramatically. This section lists some possible features that

might be relevant to determining whether a note is likely to sound in tune as judged by a listener.

The list is not comprehensive, but provides a general idea.

The first set of features relates to the music. It includes the genre of the piece being performed

(including stylistic choices common for the genre, such as pitch bending), backing track instru-

mentation (number of instruments, timbre, relative amplitude), global and local tempo, duration of

the given note, harmonic, and melodic context.

The second set of features relates to the singer. It includes vocal type (soprano, alto, tenor,

bass), vocal characteristics (timbre, breathiness), fundamental frequency characteristics (vibrato

rate, vibrato depth, and jitter [29]), vocal training (years of training, genre the singer was trained

in, e.g., classical, jazz, rock), general musical training (not related to singing), vocal ability (range,

stability, expressiveness), personal aesthetics, amount of vibrato, attack-decay-sustain-release en-

velope of the given note, musical choices, and successful and undesired outcomes during the note

and earlier in the performance.

The third set of features relates to the listener. It includes musical background (musical genre

familiarity and affinity, culture, musical training, hearing ability, subjective preference), audio

quality (live, analog, digital, compression, sample rate, bit depth, speaker quality, number of chan-

nels), room acoustics (reverberance, distance from the source to the listener), perceived intonation
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accuracy of previous notes, relationship of listener to performer (self, teacher, parent, fan, audience

member who bought an expensive ticket).

More generally, the theory should include available knowledge in areas such as the physics of

sound, psychoacoustics, cochlea structure, and masking.

Many of these features are hard to quantify or measure objectively. Their interactions are com-

plex. This increases the challenge of developing a model that encompasses the psycho-cultural

aspect of musical intonation. These challenges motivate our consideration of a data-driven ap-

proach.

3.3 Data-driven approaches

Taking a data-driven approach makes it possible to incorporate a large number of variables without

fully understanding how they interact, and therefore to build a program that is better aligned with

the real world than what we are explicitly able to explain. Section 3.4 discusses this trade-off

between understanding and expressivity. Moving from a model driven to a data-driven approach

has often ultimately led to improvement in modeling, and vice versa. An example of the former is

the model-driven Scale-Invariant Feature Transform (SIFT) from computer vision, which inspired

an encoder-decoder based feature extractor with a similar structure to SIFT, but learned abstract

parameters from the data, which produced higher accuracy [30]. An example of the latter, from

natural language processing, is the invention of a linguistically motivated, count-based approach to

word vector embedding [31], which was inspired by word2vec, a deep learning model that had

outperformed previous model-driven approaches [32]. These examples illustrate how a data-driven

approach can help move beyond arbitrary decisions such as SIFT feature extraction parameters, and

can also demonstrate through its high accuracy how well a model has the potential to perform if

formulated properly, inspiring the design of better models.

This toggling between model driven and data-driven approaches relates to how we interact with

music, both in its acoustic and digital forms. Music is not considered something that we as hu-

mans understand deeply or can model, despite the mature field of music theory and the existence
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of multiple sub-models and sub-theories that address various aspects of how music works. This

has not stopped humanity from developing musical instruments and making music. Development

of models of harmony has lead to innovation by composers, and when composers have broken “the

rules”—for example, when European Medieval singers added less pure intervals to their musical

vocabulary of octaves and fifths—this led to new models. Continuing this tradition in music tech-

nology might lead to new means of musical expression, new developments in music theory, or both

of the above.

3.4 Developing music technology: Control, interpretability, and expressivity

When developing music technology, one needs to make choices regarding how much control the

programmer has over the output, how interpretable the program’s actions are, and how complex

functions the program can express. These features tend to come at the expense of one another.

This section describes the three features and considers which ones should be prioritized for the

proposed automatic pitch correction system.

3.4.1 Control

Programmers usually provide a computer with exact, step-by-step instructions. The computer then

executes these exactly, with no ability to deal with ambiguity. When designing music technol-

ogy, a natural, naive approach is to provide the computer precise instructions for what to output

under a comprehensive list of circumstances. This approach provides exact control over the out-

put. However, formulating this set of instructions is developing a fully deterministic model. As

described in section 2.2.1, this tends to result in simplifications and loss of richness. One can note

that Auto-Tune is one example of a program that provides full control over the output.

Developments in machine learning and deep learning have provided a framework for inserting

randomness into music technology—both into model and data-driven approaches. Specifically,

they utilize computers’ capacity to generate random numbers and to follow statistical distributions.

They also provide a framework for computers to detect or learn patterns in data. Incorporating
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randomness into music technology removes some control. Music Plus One [33], a musical ac-

companiment system, provides an example. The accompaniment track dynamically adjusts tempo

based on a soloist’s actions. The adjustments are based on real-time score matching using a hidden

Markov model and future note timing prediction based on a Kalman filter-like model. Though

the structure of these models is precisely determined by the programmer, and therefore controlled,

the actual values adopted during a performance are out of the programmer’s control. The result

is much more dynamic than an alternative, where the programmer would have enforced specific

tempi under specific circumstances.

Other machine learning programs provide less control than Music Plus One. Non-negative Ma-

trix Factorization (NMF) [34]—used, for instance, for processing magnitude spectrograms—is one

such example. A NMF program represents a matrix as a set of basis vectors and activations. It it-

eratively minimizes the error between the input and reconstruction. The outcome is partially under

the programmer’s control, as the program enforces desired characteristics such as non-negativity.

However, the model can converge to multiple different results, and this aspect cannot be pre-

determined. A DNN is by default even less controllable. The programmer can design the input and

target data to the program and train the model to output data that is similar to the target, but has

little control over the weights that the model learns. The programmer also has little control over

what the program will output given previously unseen input data. Using a DNN, however, does not

necessarily result in full loss of control. Examples in later sections illustrate how a programmer

can use knowledge about a task to structure and regularize a DNN in a way that restores some

amount of control.

3.4.2 Interpretability

A program is considered to be interpretable when weights that it learns can be explained, that is,

connected to understandable features such as fundamental frequency or spectrogram amplitude. A

linear model is one example of such a program. A program whose weights cannot be explained

but rather take on an abstract meaning is often referred to as a “black box” program.
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Interpretability is often desirable when developing machine or deep learning models, as de-

scribed by Molnar [35]. Interpretability makes it easier to understand why the program fails under

certain conditions. This leads to the ability to debug and to build safety measures. Interpretability

also can be used to ensure that only relevant features are used for predictions, building reliability

and addressing problems such as bias against minority populations. Furthermore, it can build trust

among users, especially when stakes are high, as observed in the medical context. Finally, it makes

it possible to ask Why instead of What, leading towards development of new theories [35].

Interpretability declines in importance when stakes are low, or when the problem has been

sufficiently studied to provide confidence that provided insights are useful even though the weights

remain abstract. This holds, for example, in the case of optical character recognition, which has

gained acceptance in spite of its lack of interpretability through extensive practical experience and

correction of shortcomings over time.

One example of such a problem is optical character recognition, where there is enough practical

experience with the model and shortcomings have been addressed over time. Furthermore, even

in the case of models that are not directly interpretable, other techniques are being developed to

methodically detect and remove bias, as in [36].

3.4.3 Expressivity

A third concept useful for characterizing a program for music technology is its expressivity. The

model’s structural properties determine which functions it is able to compute. Higher expressivity

can come at the expense of some control and interpretability. Wager [37] provides an example in

the context of causal inference, describing how machine learning can be used to avoid extrane-

ous modeling assumptions. Approaches using easily interpretable models (e.g., linear regression)

often make strong but powerful assumptions, and these assumptions may not be scientifically or

methodologically motivated. A partially linear model is more expressive and enables addressing

more complex situations such as treatment heterogeneity, which would have been outside the fam-

ily of functions expressible by the linear model. Its parameters can be estimated using generic

34



machine-learning tools. [37]

In the case of DNNs, complexity of the computed function has been shown to grow expo-

nentially with depth [38]. Even a single-layer network can theoretically express any function as

long as it contains enough weights. DNNs represent the quintessential black-box model: They

make possible expressiveness, but at the cost of being notoriously difficult to control or interpret.

Conv-TasNet is one example of such a network [39]. It is designed for source separation and takes

as input the time-domain audio signal without any pre-determined feature extraction such as a

Short-Time Fourier Transform (STFT). A time-domain signal is harder to interpret than a time-

frequency signal, where separation of the signal into its frequency components corresponds to the

way the human auditory system processes sound. Trained people might even decipher music or

speech from a spectrogram [40, Ch. 3, p. 41]. In the time domain, many audio signals that look

quite different can sound the same to the listener, because the only difference is the phase offset

[41]. Conv-TasNet replaces the STFT with multiple convolutional filtering layers that are trained

to produce an optimal feature extraction for the task of source separation. The large number of

filtering layers are hard to interpret, especially because of non-linear activation functions applied

to the outputs, such as parametric rectified linear units—a ramp function where the negative side is

modified to have small nonzero weights [42]. After these layers of filtering, the signal is processed

in an unknown embedding space, which is again useful for the task but hard to interpret.

Though more expressive models are not always fully interpretable, increasing interpretability

is an active research area. The boundary between understandable and black box models is not

fixed. Examples of techniques that increase understanding involve examination of what deep con-

volutional neural networks learn by visualizing inputs that maximize the activation of the filters

[43]; restructuring of convolutional neural networks as probabilistic models [44]; and research on

interpretable parameters in reinforcement learning [45].

3.4.4 Setting priorities in the proposed system

How important is it for the proposed system to be controllable, interpretable, and expressive?
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Section 3.3 briefly argued that a high level of control over exactly what should happen musi-

cally under a comprehensive list of circumstances is not necessary for music making. That might

actually be misaligned with how even top musicians perform. Though a top musician has technical

mastery of their musical instrument, much randomness can occur during a performance, and the

musician is reacting spontaneously to other musicians’ actions and other factors such as the mood

they are in. Such reactions are not fully controlled by the musician. Furthermore, the musician may

not be able to comprehensively interpret which factors led to specific successful or unsuccessful

artistic decisions in a performance.

Thus, the objective for the automatic pitch correction algorithm proposed here is to increase

expressivity relative to existing approaches while maintaining reasonable levels of controllability

and interpretability. The proposed system strives to predict pitch shifts in the context of physics of

sound, psychoacoustics, and musical traditions. Section 3.2.2 described the large number of mov-

ing parts in the empirical approach. Given empirical studies of intervals in musical performances,

the proposed approach should predict pitch corrections on a continuous scale instead of mapping

frequency to a discrete set of values. It should apply to musical genres and cultures that do not use

the equal-tempered scale. Furthermore, given that it builds on psychoacoustics, it should utilize the

full vocals and backing track timbres to make predictions instead of the fundamental frequency ex-

tracted from the vocals. These goals result in an automatic pitch correction system that takes more

complex data as input and outputs more complex predictions. It likely requires a very expressive

system.

The proposed system can still use a time-frequency transformation as a pre-processing step

instead of directly processing the time-domain audio signal. It also uses MIDI-like abstractions

of notes, processing notes instead of audio samples. These design decisions prevent undesirable

artifacts from occurring within a note. They increase control, and decrease expressiveness.
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3.4.5 What happens when the pitch correction fails?

When working with a model that is not fully controllable or interpretable, it is important to consider

what types of erroneous output or bias the program might produce, consider how to prevent it,

and determine how much to prioritize minimizing these wrong outputs compared to expressivity.

An example where avoiding wrong outputs is the top priority is the design of self-driving cars,

where a physical risk is involved, or a credit-score predictor, where bias can impact an individual’s

economic status.

The effect of an automatic-pitch-correction error depends on the context in which the program

is used. The context for the proposed program is as a post-processing tool for an amateur, karaoke-

style performance. If the user applies the plug-in, and a note gets worse, one can imagine two

negative outcomes. One is that the user notices the mistake and decides not to use the plug-in, even

if it might make other notes sound more in tune. Another is that a user with low confidence in their

ability to hear pitch assumes the program is correct, and as a result feels less confident or accepts

a bad result. However, a solution to both negative outcomes would be to design the program to be

interactive, and to make clear to the user that, as a machine-learning-based algorithm, it sometimes

makes mistakes. The interaction would, for example, let the user listen to “before” and “after”

segments and decide note by note whether or not to accept the result. Optionally, the user could

even adjust the prediction. Framed in this way, the program might actually serve as an ear-training

tool that lets singers refine their ability to hear subtle pitch shifts and how these affect intonation.

With excellent design, detecting mistakes might actually make the program more fun to interact

with and musically stimulating than a program that enforces its model of in-tune singing on the

user’s performance and “considers” itself to always be correct. Ideally, the program could even

learn from user feedback to avoid repeating mistakes and become tailored to individual preferences

and styles.

As described in later chapters, bias can be an issue for this program, especially in the context of

less-common musical genres. Training a model on pop will likely make it unusable for Classical

Indian music or blues because the singing styles are very different. Just as singers develop a style
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within a specific musical style, and build on a specific musical tradition, the model should be

trained on the appropriate dataset. It is also important to include a variety of vocal timbres and

even accents because vowel formant affects timbre.

What becomes clear is that, in deploying the proposed automatic pitch correction algorithm,

it is important to involve professional designers and/or music theorists or musicologists to ensure

a positive user experience and to make sure that musical genres and singing styles are properly

represented.

3.4.6 The usefulness of deep learning for automatic pitch correction

In the field of audio processing, deep learning has proven to be a technology that lets us repre-

sent audio in a richer manner than abstract notes—as in MIDI—processing audio at the level of

the sample or spectrogram bin. The software and hardware developed for deep-learning tasks are

powerful enough to process audio data in its full complexity. Deep-learning methods have been

shown to produce impressive and state-of-the-art results on ill-defined audio tasks such as gen-

erating natural-sounding speech for home assistants [46], pitch detection [47] or dereverberation

[48]. The first example, Wavenet is a deep generative model of raw audio waveforms of speech.

It was shown to reduce the gap with human performance by over 50% compared to the state of

the art in Text-to-Speech synthesis algorithms. The model is fully probabilistic and autoregressive.

Oord et al. write that it is able to produce natural-sounding speech based on its training on tens

of thousands of samples of audio per second. The DNN structure in this case provides the ability

to work efficiently at the level of the audio sample on speech, which is a complex signal. The

second example uses a deep convolutional network to extract features from a time-frequency rep-

resentation of polyphonic audio. Extracting pitch information when there are multiple instruments

is challenging, but the large number of filtering layers provides the model the ability to extract

useful information from a complex signal. The third example is based on the Wavenet mentioned

above. It takes as input reverberant audio, and outputs a dryer version of the signal. In this case,

the DNN provides the ability to work with raw audio, not discarding much of the richness of the
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signal despite removing room reflections.

The automatic pitch correction task has similar goals to the above examples. It aims to extract

frequency and interval information from vocals and backing tracks, and to process complex audio

and music data. The success of DNNs in audio provides a reason for considering using one for the

given task.

39



CHAPTER 4

THE DATA-DRIVEN PITCH CORRECTION ALGORITHM

This chapter provides details of the algorithm [49]. It begins with related work, and then moves to

the neural network structure. It also covers the data preparation steps—including pitch de-tuning

and feature extraction—followed by the training configuration and the experimental setup.

4.1 Open-source repository

I released an implementation of the algorithm in Python using the Pytorch framework for deep

learning [50]. The repository is available at https://github.com/sannawag/autotuner1.

Users have the option of training the model on their own dataset or of downloading the parameters

of the model that provided the best test results. The repository also includes code for a base-

line automatic pitch correction algorithm introduced in 6.2, and an implementation of the Time-

Domain Pitch-Synchronous Overlap and Add (TD-PSOLA) algorithm [51]. A standalone im-

plementation of TD-PSOLA is available at https://github.com/sannawag/TD-PSOLA.

The dataset used to train the model is available upon request via https://ccrma.stanford.

edu/damp. Note that the CQT parameters used in the published dataset are different from those

referred to in this chapter.

4.2 Related work

The first commercial pitch-correction technique, Antares Auto-Tune [52], is also one of the most

commonly used. Section 2.3 describes how it is designed. Auto-Tune measures the fundamental

frequency of the input monophonic singing recording, then re-synthesizes the pitch-corrected audio

signal. In recent work on continuous score-coded pitch correction [53], as in Auto-Tune, each

1Note that the algorithm used to be named Deep Autotuner, but I have modified the name when possible to avoid
confusion with the trademarked term Auto-Tune by Antares.
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Figure 4.1: Program overview. The program processes one note at a time, and predicts a constant
shift for the note’s duration. The proposed DNN architecture includes convolutional layers for
feature extraction followed by GRUs for sequential processing.

vocal note is pitch shifted to the nearest note in a user-input set of pitches (scale) or to the note

in the score if it is known. The default musical scale is the equal-tempered scale, in which each

pitch p belongs to the set of MIDI pitches [0, 1, ..., 127] and its frequency in Hertz is defined as

440 ∗ 2 p−69
12 . Some users prefer a finer resolution and include more than twelve pitches per octave,

or use intervals of varying sizes between pitches. In every case, the fundamental frequency is

discretized to a small set of values, around which every note is shifted to be exactly centered.

Hence, the pitch shifts tend to ignore a singer’s intentional expressive gestures and might not

easily apply to musical traditions with different scales or more fluidly varying pitch. The proposed

algorithm accommodates a variety of frequencies by letting the fundamental frequency take any

value along a continuous scale, and by shifting every note by a constant without modifying internal

pitch variation.

Other recent approaches to pitch correction include style transfer. Style-transfer-based work

modifies amateur performances to mimic a professional-level performance of the same song. Luo

et al. propose to match the pitch contour of the professional-level performance while preserving
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the spectral envelope of the amateur performance [54]. Meanwhile, Yong and Nam propose to

match both the pitch and amplitude envelopes [55]. The approach in this thesis is similar in the

sense that it also uses features gathered from high-quality performances [2]. However, it does not

necessitate a “target” performance of the same song during testing. Instead, it learns from many

in-tune singing voice examples and their backing tracks, and then generalizes to unknown songs,

while preserving the original singer’s style.

4.2.1 Music information retrieval

While only a few algorithms exist for pitch correction, Music Information Retrieval (MIR) research

on related tasks such as pitch detection provides a useful background for this thesis. Gomez et al.

[56] provide an overview of recent developments in deep learning for singing processing, ranging

from pitch detection to singing separation and synthesis. Pitch detection is particularly relevant

to automatic pitch correction. Pitch detection algorithms, like the algorithm in this thesis, aim to

extract harmonic patterns from the audio. In the case of pitch detection, the target pitches are often

manually labeled.

Bittner et al. introduce a fully convolutional DNN for polyphonic pitch detection and tran-

scription. The input is the magnitude Harmonic Constant-Q Transform (HCQT) of the audio. The

CQT is a time-frequency transformation suitable for a convolutional neural network, which I also

use in this thesis. It can be contrasted to the Fourier transform, which has linearly spaced center

frequencies fn = n ∗ SR
N

, where n is the frequency bin index, SR is the sampling rate, and N

is the dimension of the transformation space. The CQT instead has logarithmically spaced center

frequencies fj = fmin ∗ 2 j
b where fmin is a pre-defined minimum frequency and b determines the

number of bins per octave. The fact that the center frequencies are logarithmically spaced results

in the audio representation being translationally invariant, meaning that shifting a musical inter-

val up or down will not change the distance between the harmonics in the CQT. This enables a

Convolutional Neural Network (CNN) filter to discover harmonic patterns across the full range of

frequencies. Another advantage of the CQT representation is that its resolution resembles that of
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the human auditory system, with high resolution in the lower frequencies and wider bins in the

higher frequencies. The downside of using CQT is that it cannot benefit from the Fast Fourier

transform optimization, so is computationally expensive, O(N2) instead of O(N log(N)). Bittner

et al. add more resolution by computing multiple, overlapping CQTs, each starting at a different

frequency. This technique is called HCQT. The CNN structure includes four lower layers with

small filters of dimension 5 × 5 or 3 × 3 to detect small-scale patterns. The fifth layer, instead,

uses a filter that spans an octave of audio. This layer increases the relevant receptive field of each

output state—the context in the input HCQT it can access—without needing to make the network

very deep. The sixth layer uses a 1 × 1 filter to combine all the learned features and output a

pitch activation map [47]. The DNN proposed in this thesis utilizes CNN layers whose structure is

closely based on this network. Since the pitch correction task is sensitive even to a small amount

of pitch shift, I also choose to use the CQT for its finer resolution in the lower frequencies. I do

not use HCQT as it is too computationally expensive.

Basaran et al. add a GRU layer [4, 57] to the pitch detection CNN described above in order

to model the sequential nature of [58] audio and music signals. The network estimates the main

melody in polyphonic audio signals in the CQT representation. I include a GRU in the proposed

algorithm.

4.2.2 Deep learning

Research in the broader field of deep learning also provides a useful background for the given task.

One challenge with the pitch correction DNN is that its depth makes it hard to train. Wager et

al. improve the performance of a DNN with multiple layers by first training the lower layers on

a smaller task, then initializing the corresponding the full network with the trained weights. The

network—designed for automatic speech recognition—has a similar structure to the one proposed

in this thesis, with linear lower layers for feature extraction followed by recurrent layers for se-

quential processing [59]. I use a similar type of pre-training of a smaller version of the DNN in the

experiments described in this chapter.
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Wavenet is a highly expressive model that can synthesize or transform sound at the level of the

sample [46]. The Wavenet-based dereverberation network introduced in [48] demonstrates that it

is able to learn a transformation for a highly complex task. The network is trained in an adversarial

manner [60] to help the results retain the nature of the original signal. It provides inspiration for

moving to a sample-by-sample model from the current note-by-note model. Though this thesis

does not include experiments using such a model, the concept of moving to a more fine-grained

representation is worth investigating.

4.2.3 Audio signal processing

Monophonic pitch detection and transposition techniques provide tools for feature extraction and

post-processing. I use the pYIN algorithm [61] for pitch detection in this thesis. pYIN is used

as a benchmark for measuring frequency in monophonic music signals [29]. Unlike other state-

of-the-art algoritms, including CREPE [62], its resolution is not limited to a margin such as 20

cents. While this precision is suitable for MIR tasks such as music recommendations, in the case

of musical intonation, 20 cents can make the difference between being in tune or out of tune.

The pYIN algorithm, like the pitch detection algorithm used for Antares Auto-Tune, is based on

autocorrelation for periodicity detection. Autocorrelation alone is not always reliable: It might find

a stronger periodicity at a harmonic—for example, the octave—or choose a maximum periodicity

at value 0, when the signal is not shifted. The pYIN algorithm is based on the YIN pitch detection

algorithm [63], which adds steps after the autocorrelation computation to reduce error from 10

per cent to 0.5 per cent. These steps include a weighting of the autocorrelation output to reduce

periodicity at harmonics, and a cumulative normalization that discourages selection of the 0-lag

periodicity without a need for an arbitrary threshold. It also includes linear interpolation to further

refine the pitch estimate. The pYIN algorithm applies a HMM to the output of YIN, using a set of

candidate periodicities instead of selecting the maximum one. This results in a smoother output.

Both YIN and pYIN output 0 when they do not detect a period, making the output suitable for voice

activity detection and note boundary analysis. The precision of the pitch measurement combined
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(a) (b) (c) (d) (e)

Figure 4.2: CQT of the vocals and backing tracks computed using Librosa [64]. The plot focuses
in on frequency bins 300 through 700 out of 1024 for better visibility. (a) shows the CQT of the
backing track. The horizontal lines are due to constant pitches, which indicates that a chord is
being played. (b) and (c) show the CQT of the vocals before and after the correction, respectively.
(d) and (e) show the superposed vocals and backing track before and after corrections. The CQTs
are binarized by the mean of their amplitude, which makes the louder components stand out for
visibility (see Section 4.3.6). In this example, we see that the correction shifted the pitch of the
vocals up and centered it around the desired harmonics of the backing track (red circles).

with the voice activity detection make pYIN ideal for the automatic pitch correction task. As

described in 4.3.1, the HMM used in pYIN inspires the HMM explored in this thesis for detecting

note boundaries.

Another useful tool is TD-PSOLA, a pitch shifting algorithm [51]. I use it in the post-processing

phase, applying the shifts to the audio. Similarly to YIN, it starts by detecting periodicity in audio.

It then splits the audio signal into individual periods, and shifts these slightly in time to produce the

effect of shorter or longer periods. It uses cross-fading to avoid clipping. TD-PSOLA is suitable

for the task of applying pitch corrections because it produces a natural sounding result. Unlike

other pitch-shifting techniques such as resampling, it does not modify the structure of the wave-

form except at the edges of audio windows. This minimizes changes to the formant—the harmonic

structure of the sound—so that the timbre is not modified along with the pitch.

4.3 The proposed algorithm

The proposed model takes as input two CQTs—the monophonic vocal track’s and the back-

ing track’s (also called accompaniment)—and outputs pitch shift predictions. The DNN struc-
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Figure 4.3: Training technique for the model using synthesized in tune versus out-of-tune data
pairs. The program first detunes the original singing. As a result, the measured pitch moves from
the purple line to the red line. The deep neural network takes as input the detuned signal, and
predicts shifts that will restore the original pitch. The result of the predicted corrections is in
green.

ture is built on the assumption that the backing track has clearly identifiable pitches—a chord

progression—which serve as a reference for the vocals. The program uses the harmonic alignment

between the vocals and backing tracks to make its predictions. Figure 4.2 shows the CQT of vocals

and backing track excerpts of a few notes before and after applying predicted pitch corrections. In

the excerpt, the backing track pitches are mostly constant, meaning that a chord is likely being

held. After the correction, the vocals appear to be more closely aligned with the backing track, as

can be seen in a CQT combining the two tracks.

The model is trained in a supervised manner. Training data consists of pairs of performances

that are identical except for the vocals pitch. The backing track remains fixed, as it is when the

singer performs in a karaoke setting. The input-target pairs, while required to train the model,

are difficult to come across naturally. Hence, I synthesize them by detuning high-quality singing

performances to construct the input signals, and then train the DNN to predict the shifts that recover
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Figure 4.4: Model architecture with extension layer. A GRU sequentially processes the outputs for
each note from the original DNN and is followed by a linear layer that outputs note-wise shifts.

the original performances. Section 4.3.6 describes the de-tuning process.

4.3.1 Note-by-note processing

The network corrects the pitch of each note by shifting all frames included in it by a constant.

This approach is based on the assumption that every note is a single musical event, and that its

accuracy can be improved by shifting it as a unit. The first step to processing the performance

note by note is to detect the note boundaries. I choose not to use a musical score, first, because

this makes the program usable in the many situations where no score is available, second, because

this avoids inconsistent note boundaries due to alignment errors or improvisation. I tested three

different approaches to score-free detection of note boundaries. Their respective outputs can be

visualized in Figure 4.6.

The first note parsing technique, which produced the best result, was to define every transition

silence as a note boundary. To this end, I analyzed the vocals pitch using the frame-wise pYIN

algorithm, implemented as a Vamp plugin in [65]. The frame-wise pitch is set to 0 for unvoiced

frames, which makes it possible to easily treat transitions between voiced and unvoiced frames
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Figure 4.5: Note de-tuning Hidden Markov Model. The approximate de-tuning amount per note
is defined in the hidden states. The exact de-tuning is sampled from the state using a Gaussian
distribution,.

as note boundaries. A small amount of smoothing was required to avoid glitches in the case

where a single frame had value 0. The advantage of this technique is that it minimizes artifacts

during shifting. Any discontinuities arising due to pitch shifting a section of an audio recording

are insignificant because the audio is silent at the discontinuity points. The disadvantage is that

this note parsing technique fails to split notes when they are connected, though this is common in

legato melodies. This means that if one part of a legato passage is out of tune and another part

isn’t, a shift that would correct the out-of-tune part would de-tune the remaining part.

The second approach, which turned out to be too error-prone for the task of automatic pitch

correction, was to use the note-wise pYIN plugin available as an extension to the original frame-

level pitch detection algorithm algorithm. This program is useful for melody detection, but I found

that it did not always start and end notes at exactly the right frame for minimizing discontinuity.

It often left small gaps between the end of one note and the beginning of the next one, making

it difficult to determine what to do with these unaccounted frames. It also tended to be rather

sensitive, converting pitch bending into two discrete notes. Any undesirable splitting of notes can

have a significant impact on the ability of the model to perform reliably well. If a part of a note is

separated from the rest and shifted in a different direction, the unnatural result can be displeasing

enough to make a whole excerpt sound bad to the listeners.

The third approach assigns note boundaries to the vocal track using a Gaussian HMM applied

to the frame-wise pYIN pitch contour. This approach combines the reliable output of pYIN with
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a customized note parsing technique. The hidden states in the HMM are the equal-tempered scale

frequencies within the range of given performance, 440 ∗ 2 p−69
12 , where p ∈ [21, 108], the standard

MIDI range. 0 is included as a state for silence or unvoiced frames. The HMM standard deviations

map to the difference in pitch between each equal-tempered scale frequency, leaving much room

for the pitch in a note to vary from the center mean. The transition matrix is set to 0.001 everywhere

except in the diagonal, which makes each row sum to 1. The starting probabilities are uniformly

distributed. Fitting this model assigns a note state to each frame and provides boundaries both

between legato notes and between unvoiced and voiced sections. The potential shortcoming of this

approach is that it relies on the definition of a discretized scale. I note that it would be possible

to use a more fine grained scale if working with a musical style that is not based on the equal-

tempered scale—for example, use 22 subdivision of the octave for Classical Indian music. I used

the equal-tempered scale here because the dataset I worked with was mostly made of popular music

that used that scale.

4.3.2 Neural network structure

I trained two different DNN architectures. The second is an extension of the first, designed to

include more temporal context across notes. The first version of the network consists of six stacked

convolutional layers followed by a GRU layer. The network architecture is illustrated in Figure 4.1.

The last output of the GRU is fed to a dense layer that predicts a single scalar output, the note-wise

pitch shift. The convolutional filters pre-process the CQT, reducing its dimensionality while also

extracting abstract features. Next, the GRU—from which the network only uses the last output—

reduces the representation of a variable-length note to a fixed-length vector. Finally, the dense layer

predicts the pitch shift in the approximate range of −1 to 1, which is mapped up to a semitone in

either direction, or −100 to 100 cents. A semitone corresponds to one note shift on a piano.

The activation after each convolutional layer is the Rectified Linear Unit (ReLU) [42]. The

DNN uses a linear activation for the prediction, to prevent having the model converge to favoring

larger shifts. For example, the hyperbolic tangent function might have tended to move values closer
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Table 4.1: The proposed network architecture.
Conv1 Conv2 Conv3 Conv4

#Filters/Units 128 64 64 64
Filter size (5, 5) (5, 5) (3, 3) (3, 3)

Stride (1, 2) (1, 2) (2, 2) (1, 1)
Padding (2, 2) (2, 2) (1, 1) (1, 1)

Conv5 Conv6 GRU Linear
#Filters/Units 8 1 64 1

Filter size (48, 1) (1, 1)
Stride (1, 1) (1, 1)

Padding (24, 1) (0, 0)

to −1 or 1 and away from 0.

The GRU recurrent structure is a way for the model to analyze the singer’s note contour, which

can last from a split second to multiple seconds, while smoothing over unvoiced or noisy sections.

This is crucial because the algorithm is expected to rely on aligning harmonics, which only occur

in pitched sounds. Another advantage of using the GRU is that the hidden state output by one note

can initialize the hidden state for the following note, passing along some information about the

previous notes. Even when using the simplest possible detuning model, which shifts every pitch

by an independent amount, we can assume that some information from past notes (e.g. from the

backing track) is useful. The GRU is unidirectional, meaning that it is only exposed to past musical

events. I assume this is sufficient information, as a performing musician can adjust intonation

without hearing future events.

The extended version of the DNN is designed to enable the model to include more temporal

context. As shown in Figure 4.4, the final dense layer is replaced by a second GRU that takes as

input the sequence of note representations output one-by-one by the first GRU. It finally applies a

dense layer to the full sequence to output a song-level prediction sequence. This version has the

potential to reach farther back in time, and include information from the chord progression in the

backing track and long-term melodic patterns in the vocals. The downside of this model design is

that the DNN is deeper, which makes it more difficult to train.

Table 4.1 displays the structure of the proposed network without the extension. The feature
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extraction layers are convolutional, which is common for image processing. The input to the

model is in spectrogram format, which resembles an image, except for the fact that its meaning is

different along the time and frequency axes. In image processing, dimensions reduction techniques

like max pooling are common. These techniques treat the x and y axes in the same way, which we

wish to avoid. To preserve the frequency patterns axis, the proposed approach instead uses strides

of two only in the time axis in three of the convolutional layers. This method was shown successful

for the task of learning latent representations for speech generation and transformation in [66]. The

third layer also includes a stride along the frequency axis, but this occurs only in one layer to not

lose too much information. The fifth convolutional layer has a filter of size 48 in the frequency

domain, which captures frequency relationships in a larger range of the CQT, as done in [47] and

[66]. The error function is the Mean-Squared Error (MSE) between the pitch shift estimate and

ground truth over the full sequence of notes. The MSE corresponds to the error in cents using the

formula |cent error| = 100 ∗ √MSE.

Applying the predicted pitch corrections

Once the program has output pitch correction predictions, these are applied to the vocals in post

processing. The TD-PSOLA algorithm provides a natural sounding output with few artifacts.

The shifting is constant across note, and subtle cross-fading is applied between legato notes—in

between which there is no silence—to avoid glitches at the boundaries.

4.3.3 Post processing versus real time

The neural network introduced in this thesis is not explicitly designed to work in real time. First,

the algorithm is designed for post-processing plug-ins such as are found in music apps like Smule.

Second, the task of automatic pitch correction is challenging enough even given abundant compu-

tation time, so I choose to leave real-time applications to future work.

Even in its current form, though, the model might be adaptable to near-real-time processing

as it only uses information from previous notes to make a prediction for the current note. Even
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within a note, it processes one frame at a time in order. The challenge would be to make the data

pre-processing—involving pitch detection and feature extraction—fast enough.

4.3.4 Dataset

During my internship with Smule, Inc, a company that offers a singing app for smartphone, my

team and I constructed a training dataset by deriving from the “Intonation” dataset [2], which is

assumed to be a collection of in-tune singing voice tracks. A detailed description of the dataset,

including instructions on how to access it, is available in Chapter 5. The 4702 separate vocal tracks

in the dataset are mostly of Western popular music, collected at Smule for good intonation. While

browsing the dataset, I also discovered a few tracks of Blues; Western Classical music; Latin,

Japanese, and Indian popular music, Country; and Rock. The songs are mostly based on the equal-

tempered scale, but contain a wide variety of pitch deviation patterns from the scale. I discuss

the measured pitch distribution in Chapter 5. While these real-world recordings contain some

artifacts, no particular signal processing—e.g. denoising or filtering—has been applied to them.

Each recording contains one minute of a performance, starting 30 seconds into the song. Although

they are assumed to be in tune, this is not always exactly the case as the users are not necessarily

professional singers. Overall, the sung pitch is sounds quite accurate and aligns reasonably well in

timing and in pitch with the known musical score. Note when compared with the intended pitch.

Hence, we can treat this paper as a proof of concept. The model can be trained on professional

singing for best results.

Based on the metadata for each track indicating the backing track and user index, the dataset is

split into 4561 training performances, 49 validation performances, and 64 test performances. The

training set contains 709 backing tracks performed by 3468 different users, while the validation

set is with 17 tracks sung by 43 users and the test set is with 16 sung by 62. There is no overlap in

the backing tracks across the three sets. Overlap exists in the singer ID between the training and

validation sets, but not with the test set.

52



4.3.5 The detuning process

As introduced in Section 4.3, the DNN is trained in a supervised manner. An input data sample

consists of an out-of-tune performance, and the target consists of the note-wise shifts that should

be applied to the vocals track to make it sound in tune. This type of pair is difficult to come

across, unless one manually labels the corrections for every note in hundreds or in thousands of

performances. The proposed approach to constructing training examples is to synthesize de-tuned

examples. Singing performances from the “Intonation” dataset are de-tuned by shifting every note

up or down and recording the amount of shift as the target. The synthetic pitch deviations are

limited to approximately one semitone (100 cents) in either direction, a larger interval than the

standard score-free approach of snapping to the nearest pitch, which limits the shift to 50 cents.

In practice, it prevents errors in cases where the required shift is greater than 50, but can lead to

degradation of the prediction accuracy on a too badly detuned input.

To detune the training data, the program shifts the magnitude CQT up or down. This is ex-

pected to not produce too noticeable artifacts that the program could learn instead of the pitch

relationships. The one issue is formant shifting, but this is not a big concern when only shifting by

±100 cents or less. I experimented with shifting the training data using TD-PSOLA, but this did

not produce noticeably better convergence, and increased the computational complexity due to the

need to compute autocorrelation instead of simply shifting a matrix.

De-tuning distributions

The de-tuning process described in the previous section requires assigning a distribution to the

random shifts. Choosing a proper distribution involves balancing exposing the model to a wide

variety of errors with ensuring it also is exposed to small deviations. A too spread distribution

risks causing the model to frequenly apply large corrections, and produce noticeable errors.

I experimented with two distributions. The first is the random uniform distribution in the range

[-100, 100] cents, adjusted to the logarithmic scale of cents so that the shift of the CQT spectrogram

is linear. Random uniformly distributed shifts are very simple to implement, and provide the model
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with plenty of examples of a wide variety of shifts, ranging from zero—which is useful, because

singers are not likely to sing every note out of tune—to large ones. The downside is that this de-

tuning technique is not based on real intonation patterns in out-of-tune singing. Furthermore, it is

based on the strong and likely incorrect assumption that the detuning for every note is independent

from that of other notes.

A Gaussian HMM addresses both of the shortcomings of the random uniform distribution in a

simple manner. HMM states represent deviation levels, while the Gaussian distribution provides

variance. The HMM structure is illustrated in Figure 4.5. The HMM is trained on real-world

singing examples in the publicly available MIR-1K dataset of karaoke performances [67]. The

proposed HMM outputs deviations in cents from the equal-tempered scale. These deviations are

represented as the difference between the equal-tempered frequency output by the HMM used to

parse notes, described in Section 4.3.1, and the median of the measured frame-wide pYIN pitch.

As before, the equal-tempered scale can be replaced with any other division of the octave. The

proposed model uses five hidden states, but the number is arbitrarily chosen and can be replaced

by a different value. Sampling from this HMM produces sequences of pitch deviations that are

based on real-world deviations and are not completely independent across notes.

To address the issue that all deviations will be 50 cents or less, because the distance to the

nearest scale degree will never be greater than this, the MIDI pitch is moved by a semitone 5 per

cent of the time across the median measured pitch, increasing the range to 100 cents. 5 per cent was

another arbitrary choice, but the use of HMM is still expected to produce a slightly more accurate

pitch behavior representation than the random uniform distribution.

The parameters learned from the MIR-1K dataset are in Table 4.3.5. The means show a state

very close to the equal-tempered scale, at 3, two that are offset by a few cents—one in each

direction—and two that are more than a quarter tone away. I note that singers were very likely

to start close to an equal-tempered scale degree, and almost never started far off. They also didn’t

tend to stay far off, as the transition probabilities from a larger deviation to a larger deviation are
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μ σ pstart ptrans

⎡
⎢⎢⎢⎢⎣

52
13
3
−8
−73

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

31
25
16
25
24

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0.1
9
76
15
0.1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

4 30 30 35 1
13 27 30 24 5
24 17 22 15 23
16 25 28 23 7
3 36 30 30 0

⎤
⎥⎥⎥⎥⎦

Table 4.2: The de-tuning Gaussian HMM parameters fitted to the MIR-1K dataset. The first col-
umn shows the means, or hidden states, and the second column shows the standard deviations.
The final two columns show the start and transition probabilities. All parameters are in cents, a
logarithmic measure, and rounded to the nearest integer, except for zeros, which are set to 0.1 to
show that no transition had zero probability.

the smallest.2 One should note that these parameters include the occasional shifts of the note across

the median pitch. Despite this modification, the distribution is slightly less spread than the random

uniform option, as shows in Chapter 6, Figure 6.2.

The HMM model pitch deviation is not the most complex model that could be used for the

task. It could be replaced by a RNN that uses additional information, such as absolute frequency—

given that a singer might be more likely to sing sharp or flat based on the register—or spectral

information. One could go another step further and synthesize out-of-tune singing using a WaveNet

and/or adversarial training.

4.3.6 Data pre-processing details

The audio signals are normalized, then transformed using the CQT. The CQT covers 5.5 octaves

with a resolution of 16 bins per semitone. The lowest frequency is 125 Hz. The top and bottom 16

bins are used as a buffer for pitch shifting, then truncated so that every input has dimension 1024.

The frame size spans 92 ms and the hop size 11 ms. The vocals and backing track CQTs form two

input channels to the neural network. In previous work, I experimented with using a third channel

that would help bring out the contrast between the first two channels. I binarized the two CQT

2I later realized that the pitch detection was based on mixed MIR-1K signals, which included the accompaniment.
This resulted in a more spread and noisy distribution, but I believe this larger spread was useful for training the model
to address larger shifts.
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spectrograms using the mean modulus as a threshold, a technique used in computer vision [68]. I

then took the bitwise disagreement of the two matrices based on the expectation that the in-tune

singing voice, better aligned with the backing track, would cancel out more harmonic peaks than

the out-of-tune tracks. Figure 4.2 illustrates the three channels. It includes the binarized CQT

before and after shifting though the third channel was ultimately left out, because it helps visualize

the shift. Surprisingly, though the convergence with the third channel was better for multiple

epochs, the loss with two channels ultimately dropped below its counterpart. The difference took

long enough to appear that I only discovered it because I had left two models training for additional

time despite having already concluded that the third channel improved the results.

4.4 Experimental configuration

4.4.1 Training setup

The program uses the Adam optimizer [69]. It processes one note at a time as a minibatch of seven

differently pitch-shifted versions. It does not include batch normalization because the different

versions of the same note are not i.i.d. When using the second GRU layer that bases the prediction

on the sequence of notes, the outputs for each note are stored, then input to the GRU.

The program applies gradient clipping [70] with a threshold of 100. It reports validation loss

every 500 songs and save the model with the best result along with the latest one.

4.4.2 Initialization

The convolutional parameters are initialized using He [42], and the GRU hidden state of the first

note of every song is initialized using a normal distribution with μ = 0 and sd = 0.0001. The

hidden state of the note sequence GRU is initialized in the same way. When using the note sequence

GRU, the weights from the note-by-note model can optionally be used to initialize the lower layers.

These lower layers can also be fixed for an epoch before being trained all the network parameters.

56



Experiment settings

Note parsing De-tuning Learning rate Extension Initialization

Silence Uniform 0.00001 No He, Gauss
Silence HMM 0.000005 No He, Gauss
HMM HMM 0.00001 No He, Gauss
Silence Uniform 0.000005 Yes pre-trained,

Gauss
Silence HMM 0.000005 Yes He, Gauss
Silence HMM 0.000005 Yes pre-trained,

Gauss

Table 4.3: The Note parsing column indicates whether the note boundaries were assigned based
on silent pYIN frames or based on state changes in the HMM assigning a scale degree to each
frame. The De-tuning column indicates whether the de-tuning distribution was random uniform or
sampled from the HMM trained on MIR-1K. The Extension refers to whether the song-level GRU
is added to the model architecture. Finally, the Initialization column provides the distributions
used to initialize the parameters, and whether the feature extraction layers were initialized using
pre-trained parameters from the model without extension.

4.4.3 Experiments

In this thesis, I report test results on a set of different configurations, listed in Table 4.4.3. Note that

I only report configurations that showed the strongest convergence. First, I compare note parsing

techniques and de-tuning techniques when training the smaller version of the model. I examine var-

ious learning rates. For the best performing models, I add the song-level GRU extension to check

whether the deeper neural network performs better. I train the extended model either from scratch

or initializing feature extraction parameters with the values learned for the smaller model. In the

latter case, I freeze the pre-trained weights for one epoch. This technique was shown successful

in previous work, e.g., [59]. For each model, I report results either with learning rate 0.00001 or

0.000005, based on which setting converged best. Other learning rates did not converge.
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Figure 4.6: Comparison of three different note boundary detection outputs for an excerpt from
Attention by Charlie Puth. The purple line shows the pYIN frame-wise pitch contour. The vertical
lines show the note boundaries. The first and second approaches use the frame-wise pYIN pitch
output. The first approach assigns note boundaries at the beginnings and ends of unvoiced sections.
The second approach fits a Gaussian HMM to the pitch contour, and uses the hidden state sequence
of equal-tempered scale frequencies along with unvoiced frames to assign boundaries. The third
one uses the pYIN note-wise output. In this example, the unvoiced frame approach fails to split
some legato passages into individual notes and the pYIN note approach is the most sensitive,
assigning the largest number of notes. Sometimes this is musically relevant: for example, the
lyrics in the three-step descending sequence around frames 300 to 400 are “knew-that-I, knew-
that-I, knew-that-I”, splitting each step into three musical events. The pYIN note detection detects
these boundaries. However, it misses some notes—for example, the first note after frame 600—
and its boundaries are not exactly aligned with the frames that switch between being voiced and
unvoiced—for example, in multiple locations between frames 800 and 900.58



CHAPTER 5

“INTONATION”: A DATASET OF QUALITY VOCAL PERFORMANCES REFINED BY

SPECTRAL CLUSTERING ON PITCH CONGRUENCE

This chapter describes the collection process of the “Intonation” dataset used in this thesis1. The

“Intonation” dataset consists of amateur vocal performances with a tendency for good intonation,

collected from Smule, Inc. The dataset can be used for music information retrieval tasks such as

automatic pitch correction, query by humming, and singing style analysis. It is publicly available.2

I describe a semi-supervised approach to selecting the audio recordings from a larger collection of

performances based on intonation patterns. The approach can be applied in other situations where

a researcher needs to extract a subset of data samples from a large database. A comparison of the

“Intonation” dataset and the remaining collection of performances shows that the two have different

intonation behavior distributions. I also analyze the “Intonation” dataset to check whether its

amateur performances of mostly Western popular music show similar tendencies to those described

in studies in Chapter 2.

5.1 Datasets for music research

Useful datasets have been made available for certain research topics in the fields of music infor-

mation retrieval and audio. These include sound event detection [71], source separation [72], and

recommendations [73]. Sometimes, though, the best dataset available for a topic is huge and diffi-

cult to process. A large collection of audio recordings is available, but the recordings with suitable

characteristics for the given analysis form a smaller subset of the dataset. The filtering process to

extract the desired samples can be labor intensive, requiring that the researcher select the samples

with the desired features, which may or may not be labeled and can be hard to model. One way to

1This work was supported by the internship program at Smule, Inc.
2The dataset and detailed description of the contents are available upon request via https://ccrma.

stanford.edu/damp.
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approach this selection process is to automate it using feature engineering and clustering.

This chapter provides an example of a semi-automatic process for the task of searching through

a large database of amateur karaoke performances for samples with a tendency for good musical

intonation. The need for this task arose when designing a machine-learning model to predict pitch

correction. The task requires selecting performances that were in tune enough but not those that

were out of tune or contained little singing. Note that this task requires quantifying the concept of

singing in tune. As described in Chapters 2 and 3, the concept is not obvious to model directly.

A semi-supervised approach makes it possible to avoid creating an explicit definition of in tune.

We first extracted musical intonation features from each performance, then applied spectral clus-

tering to them and subjectively choose clusters that sound in tune by listening to samples from

each. We also introduced the resulting dataset and an analysis of the intonation tendencies of its

performances. Though I present this approach for the automatic pitch correction task, it can be

adapted to other tasks, datasets, and features.

5.2 Related work

5.2.1 Automatic pitch deviation analysis

Automatic analysis of musical intonation behavior has also been performed in other contexts. For

example, Nichols et al. [74] described an approach to discovering talented singers on YouTube

based on features extracted mostly from the audio. One of the main features they chose consisted of

a pitch deviation histogram, which characterizes intonation behavior of a full performance in a low

dimension. Given that the performances were typically not associated with a musical score and that

the singing was mixed with the accompaniment and other background sounds, the authors built the

histogram from the STFT amplitude peaks. A singer who sings flat should have a histogram skewed

to the left, and an active vibrato will cause values to spread. The proposed feature extraction task

is different from [74] because, as described below, the proposed model has access to the musical

scores of the vocals and because the audio sources are separated. One can, therefore, apply a

standard pitch detection algorithm to each vocal track and compare the results to the musical score.
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Figure 5.1: Singing pitch analysis of sample performances with aligned MIDI. Two are in the
clusters selected for “Intonation” dataset (top), two in the remaining clusters (bottom). Much can
be learned about the individual performances. The top two appear more tightly aligned to the
expected pitch, though the second plot contains harmonization at a major third below the musical
score. The vibrato in the first plot is particularly smooth, a sign of an advanced singer. The third
plot shows frequent deviation from the score, while the fourth shows deviation at the beginning
and the end but accuracy in the middle, along with a smooth vibrato. Still, it is difficult visually
determine from this data format whether a performance sounds in tune.

Comparison of performance pitch and musical score is also used by [75] in the context of a tool

for musical performance visualization.

61



Figure 5.2: Global histograms of singing pitch deviations from the expected MIDI pitch in cents
summed over 4702 performances in the “Intonation” dataset and 4702 in the remaining clusters.
The plot is truncated at the top for readability. Scaled log histograms make more noticeable the
small peaks at 1200 cents in both directions, due to octave deviations, common among singers.
There is also, interestingly, a larger number of deviations between 100 and 300 cents in the negative
direction than in the positive direction.

Figure 5.3: Comparison of positive and negative deviation counts for cents ranging from 1 to 100
(omitting 0) for both datasets. In both groups, negative deviations are more common than positive
ones. The “Intonation” dataset deviations are more concentrated around zero.
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5.3 Data collection and feature extraction

We collected solo vocal tracks of karaoke performances from a very large database. The first

step was to filter for performances where singers used a headset—avoiding incorporating noise

from the backing track into the recording. Given that we had access to a musical MIDI score

of expected pitches, we also used a simple heuristic to filter for performances that were aligned

enough with the score to exclude scenarios such as people speaking instead of singing. We kept

this heuristic lenient enough that in-tune performances where the singer used harmonization (sang

different pitches than the expected melody) or made other intentional deviations from the MIDI

track wouldn’t be excluded. This pre-filtering provided 14403 performances.

The next step was to summarize intonation patterns of a performance using a low-dimensional

set of features. The procedure is shown in Figure 5.4 for two example performances. We first

compared the singing pitch to the expected pitch in the MIDI score. We computed the singing pitch

using the pYIN algorithm [61] on one minute of audio, starting at 30 seconds to avoid silence, with

one sample (frame) per 11 milliseconds. pYIN has a high frequency resolution because it is based

in the time domain and refines results using linear interpolation. Resolution is crucial for musical

intonation, where a few cents difference can determine whether a pitch sounds in or out of tune.

We shifted the MIDI score by a global constant to the octave nearest to the singing pitch, which

can differ based on gender, age, and vocal type. We then computed the frame-wise absolute values

of the difference in cents
∣∣∣1200 ∗ log2 f1+ε

f2+ε

∣∣∣ between the performance and MIDI score. Of this set

of values, we kept the differences less than or equal to 200 cents, equivalent to two semitones, in

order to focus the analysis on intonation behavior when the singer was close to the expected pitch.

Larger differences could be due to many reasons, ranging from misalignment of notes in time to

harmonization, and might add undesired noise to the distributions.

Finally, we summarized these variable-length sequences of frame-wise differences in a fixed,

low-dimensional representation. We generated a random sample of 10,000 differences with re-

placement for every performance and kept 31 evenly spaced quantiles. This empirically chosen
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number is large enough to effectively summarize the characteristics of the distribution but pro-

duces a low enough dimensionality for clustering.

5.4 Spectral clustering

As suggested by the studies described in Chapter 2, an advanced singer might produce both smaller

and wider pitch deviations, due to a pronounced vibrato or expressive variations such as pitch

bending, time shifting, or harmonization, than a singer who sings close to the musical score but is

slightly off pitch. For this reason, selecting performances based on a simple metric like average

distance of singing pitch from the score would not have been suitable. A semi-supervised approach

also made it possible to avoid directly modeling the concept of being in tune. The approach clus-

tered performances based on features generated from the deviations. The choice of which cluster

to keep was based on listening to samples from each.

Spectral clustering was applied to the summarized performances using the signless Laplacian

matrix as the adjacency graph [76]. This graph is based on selecting nearest neighbors (50 in this

case). In practice, the program clustered approximately 5000 songs at a time into 3 or 4 clusters,

depending on which value produced better Newman modularity [77]. I then listened to 50 samples

from every cluster and subjectively determined the intonation of every performance by evaluating

it as in tune, “neutral”, out of tune. Consistently, one cluster produced distinctly good results

with roughly 75 per cent of the songs classified as in tune and many of the remaining songs being

classified as neutral rather than out of tune, while the other clusters had only a small percentage of

performances classified as in tune.

Keeping the samples from the selected clusters resulted in the “Intonation” dataset of 4703

performances. Though not every performance is in tune and not every performance in remaining

clusters is out of tune, a majority of in-tune performances in this dataset suffices for many machine-

learning applications.
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5.4.1 Genre, bias, and related challenges

An undesirable outcome of this clustering approach was that musical genres were clustered along

with intonation patterns. As described in Chapter 2, different musical traditions and sub-traditions

often have diverging traditions regarding musical intonation. In the Smule samples, a majority

were of Western popular music, and the in-tune clusters tended to consist mostly of such music.

I had planned to use performances from other clusters for testing, but realized that many of the

performances were country, where singers deliberately might wish to sing flat, and the automatic

pitch correction model trained on a different genre might not apply. As this was an intern project, I

do not currently have the ability to update the clustering technique, and have to focus on the effects

of the proposed algorithm on Western pop music. In future work, if implementing this program for

real-world use, I would first separate performances by genre, then apply spectral clustering within

the genre. This improvement requires advanced genre classification, but this field is growing and

improving quickly in the context of music recommendation systems.

5.5 Analysis

The quality of the dataset is difficult to measure without a subjective listening test. At this point, we

do not attempt to directly show that the “Intonation” dataset performances have better intonation

than those in the remaining clusters. Instead, we show a difference in the intonation behavior

distributions in the two collections. In order to compare samples of the same size, we analyzed

the full “Intonation” dataset of size 4702 and a randomly selected a sample of the same size of

performances from the remaining clusters.

5.5.1 Data pre-processing for analysis

We computed the frame-wise differences between singing pitch and MIDI score similarly to the

way described in Section 5.3. Unlike before, we retained the sign instead of taking the absolute

value in order to know whether the pitch was sharp or flat. We also kept all deviations instead
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of discarding those larger than 200 cents: At the analysis stage, we are interested in intonation

characteristics across the whole performance, including the larger deviations due to harmonization,

expressive deviations, or inaccuracy.

To minimize misalignment before computing the deviations, we applied dynamic time warping

[78] to better align the MIDI and singing pitch tracks. This algorithm stretches both signals in

time in a way that minimizes the total sum of distances between the two. We used the algorithm

as described in [79] and implemented in [64]. To avoid distorting the pitch track, we forced the

algorithm to apply most time warping to the MIDI, which consists of straight lines. We discarded

frames where either the musical score or pitch tracks were silent in order to only consider active

frames in the analysis. Figure 5.1 shows four example performances after the initial processing.

The top two are from the selected clusters and the bottom two from the remaining clusters.

5.5.2 Pitch deviation histogram

We compared the sequences of frame-wise pitch deviations from the selected clusters to those

from the remaining clusters. Similarly to [74], we computed histograms of the deviations from

the equal-tempered MIDI score summed over all performances in each group, normalizing them

to have the same total counts. Figure 5.2 shows that the “Intonation” dataset deviations are more

concentrated very close to 0 than those in the remaining clusters. The same can be observed at

other harmonization peaks, ±1200 cents (an octave) and other values in between, indicating more

intentional harmonization and less accidental deviation. There is also, interestingly, a higher con-

centration of counts between 100 and 300 cents especially in the negative direction. This dataset

is of amateur singing, so there is also a chance that some singers would be singing flat. However,

this clearly visible peak might be due to intentional harmonization and expressive suspensions.

5.5.3 Pitch deviation probabilities

We examined whether we could find intonation tendencies like those described in Section 2.2.2.

Unlike in the data used in the cited studies, the backing tracks are fixed recordings, so all pitch
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Results from “Intonation” dataset (4702 performances)
Cents range Negative/positive deviation ratio Var

1 to 2 0.500 0.001
2 to 16 0.506 0.001

1 to 100 0.532 0.002
100 to 300 0.727 0.002
Results from other performances (9701 performances)
Cents range Negative/positive deviation ratio Var

1 to 2 0.500 0.001
2 to 16 0.509 0.001

1 to 100 0.541 0.002
100 to 300 0.700 0.002

Table 5.1: Probability estimates of negative versus positive frame-wise deviations of singing pitch
from the equal-tempered MIDI score, computed using bootstrapping. The analysis was performed
within different ranges of interest. When the deviation is less than 100 cents, the singer did not
sing a different note. We found a particularly strong tendency towards negative deviations in the
range of 100 to 300 cents.

adjustments happen in the voice. This can affect the pitch deviation distributions. In Figure 5.3,

we examine deviations within 100 cents because a larger deviation corresponds a different note.

Both collections tend towards negative deviations, but the tail is lighter in the selected clusters.

We quantify this result by estimating the probability of negative versus positive deviations

within various absolute deviation thresholds using bootstrapping [80] with 10000 iterations, as

shown in Table 5.1. We choose ranges of cents that are of interest when comparing theoretical

musical intervals generated using the equal temperament versus other intonation systems (e.g.,

Pythagorean or Just intonation, described in the cited studies). Use of other intonation systems

would explain deviations of 2 to 16 cents. We first examine the ratio of deviations less than 2 cents.

As expected, a probability of 0.5 shows no significant preference for flat versus sharp intonation.

Within 2 to 16 cents, we get 0.51. However, the largest probabilities occur at larger values, 300

cents. We cannot determine whether this deviation is a desirable effect or due to an unknown

factor. The tendencies are observed in both collections.
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5.6 Dataset description and applications

The “Intonation” dataset contains the full unmixed and unprocessed vocal tracks of 4702 per-

formances. It consists of 474 unique arrangements by 3556 singers. It also contains the pYIN

pitch analysis and multiple backing track features for the range of 30 to 90 seconds: constant-Q

transform, chroma, mel-frequency cepstrum coefficients, root mean square error, and onset, all

computed using the Librosa [64] package. Metadata of the performances is included. The dataset

has applications ranging from the study of singing style in the context of karaoke performances,

with optional study of user meta-data, to machine learning. For example, the vocal tracks can be

used for informed source separation, an approach similar to separation by humming, described in

[81] and [82]. Similarly, the dataset can be used for training a query-by-humming system, in a

similar way to [83]. The vocal pitch tracks and backing track features can be used to study auto-

matic pitch correction applications trained on real-world singing and develop a proof-of-concept

model for vocal pitch correction [49].

5.7 Summary

We present a semi-automatic process for the task of searching through a large database of amateur

karaoke performances for samples with a tendency for good musical intonation. The approach can

be applied in other situations where a researcher needs to extract a subset of data samples from a

large database. We show that the set of collected performances has a different intonation behavior

distribution than the set of remaining performances. The resulting public dataset, “Intonation”,

of 4702 performances is available on the Stanford CCRMA DAMP website. The “Intonation”

dataset can be used for music information retrieval applications like query-by-humming systems.

Analyzing the dataset, we find that pitch deviations between the measured singing pitch and the

MIDI score are more often negative than positive, implying that singers more often choose lower

frequencies, use them unintentionally by singing flat, or decorate pitch contours with flat sections.
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Figure 5.4: Data pre-processing steps for two example performances. The blue performance was
selected for the “Intonation” dataset and the red performance was not. The first plot shows the
frame-wise differences in cents between the measured singing pitch and equal-tempered MIDI
score. We computed the absolute values of these differences and discarded those whose deviation
was larger than 200 cents. The second plot shows random samples of 10,000 from the frame-wise
difference lists, sorted by distance. The blue curve shows less deviation from the expected pitch
than the red. The third plot shows 31 quantiles summarizing the curve in the second plot in a lower
dimension.
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CHAPTER 6

EFFECT OF DEEP PITCH CORRECTION ON PITCH DISTRIBUTION AND ON THE

SUBJECTIVE LISTENING EXPERIENCE

In this chapter, I compare the results of the experiments listed in Section 4.4. I first examine the

outputs on artificially de-tuned test data, and then on real-world karaoke examples from the MIR-

1K dataset [67]. Based on histograms of the pitch deviations of the different outputs and their

comparisons to the ground-truth Intonation dataset distribution, I choose one configuration. I use

this configuration for an informal subjective listening test.

6.1 Experiments on the synthesized test set

The validation loss curves for each experimental configuration are displayed in Figure 6.1. For

readability, the MSE is converted to absolute cents. The first three configurations did not use

the song-level GRU extension, while the remaining three did. The last two configurations have

different loss curves from the others because they were initialized using pre-trained weights. The

initial large loss in these was due to the randomly initialized layers in the extension. One should

note that the losses for different configurations are usually not comparable: the way the notes

boundaries are assigned and the de-tuning techniques will all affect the value. How does error in

cents correspond to musical accuracy? For perspective, 20 cents is the margin of error for some

pitch detection algorithms [62]. For intonation purposes, I think that 20 cents can sound out of

tune, but starts to be acceptably close. An average error of 20 cents, which would include large

errors, where the model corrected in the wrong direction, would be a highly accurate result. Even

30 cents could be considered a decent result for the same reason.

The first two models trained for a longer time than the rest. When I tested them on real-world

data, I was not happy with the audio result, and decided to test the other models at an earlier stage

in training. Test results for the third model, which was trained on 223,000 songs instead of up to
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Figure 6.1: Validation losses for the respective configurations. The subtitle refers, first, to the note
parsing technique, second, to the de-tuning technique, and then whether the model includes the
song-level GRU extension layer and whether the model was initialized using pre-trained weights.

498,000 songs, turned out to produce superior results. In later sections, I describe how I determined

this in a more objective manner. What is striking is that the validation loss in all curves has not

converged. Additionally, some models reached very small MSE values. For example, the “HMM-

HMM” model, which used HMMs both to assign note boundaries and for de-tuning, reached 0.03,
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which corresponds to 17 cents average error. In practice, though, models that reached the lowest

validation loss did not produce the best results on real-world data. I hypothesize that the models

became too specialized for their specific configurations.

To compare the quality of the various configurations, I generated histograms of the pitch be-

havior in the results. These are displayed in Figures 6.2 and 6.3 for the synthesized test examples

and the real-world MIR-1K dataset, respectively. The histograms show the pitch distributions be-

fore and after corrections. The pitch behavior is measured by generating the HMM described in

Section 4.3.1 to assign an equal-tempered scale degree to each frame of audio. I then measured the

signed difference in cents between the equal-tempered scale degree and pYIN frequencies assigned

to each frame. A wider histogram would indicate that more frames of audio are centered at pitches

far from any equal-tempered scale degree. While this metric is arbitrary, it allows for comparison

between different datasets.

In order to interpret these histograms, I also compared them to histograms of the input data,

which consisted either of de-tuned data or of the MIR-1K dataset, histograms from the Intonation

dataset ground truth, and those from professional performances from a small, separate dataset,

DSD-100 [84] of 150 tracks. The histograms are displayed in Figure 6.4. In Figure 6.2, we see

that the input data de-tuned using a random uniform distribution was more spread than the data

de-tuned using the HMM. The output histogram that stands out is the third one, “Silence-HMM”,

which is more symmetric than the others and less spread. The same configuration produces the

least spread results in Figure 6.3. The reference datasets in Figure 6.4 show that the Intonation

ground truth has a distribution similar to the output of the “Silence-HMM” model. This result

made me choose the “Silence-HMM” model for the subjective listening test.

Figure 6.4 also displays the limitations of using the Intonation dataset as ground truth. The

professional-level DSD-100 dataset has a narrower spread than the Intonation dataset, showing

how different the pitch distribution is between amateur singers selected for accurate pitch, and

professionals. The “Silence-HMM” model is able to shift the pitch deviation distribution of both

synthesized and real-world data so that its corrected distribution matches that of the ground truth.
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Figure 6.2: Pitch deviation histograms of the synthesized test data before and after corrections.
Input data de-tuned using a random uniform distribution was more spread than the data de-tuned
using the HMM. The third output histogram, “Silence-HMM” stands out as being the most sym-
metric.

Without professional-level data, though, it will not produce an outcome that has a distribution like

the DSD-100 dataset.
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Figure 6.3: Pitch deviation histograms of the real-world MIR-1K data before and after corrections.
The third output histogram, “Silence-HMM”, again stands out as being the most symmetric.

6.2 Subjective listening test

I conducted a subjective listening test to qualitatively assess the pitch correction algorithm’s per-

formance. As listening material, I selected ten twenty-second samples from the MIR-1K original

dataset, which I considered musically interesting. I had not heard the pitch correction results in the
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Figure 6.4: Pitch deviation histograms of various datasets. The first row displays artificially de-
tuned training data. Note that it appears quite similar to the MIR-1K real-world data before corre-
tions, shown in the bottom left subplot. The left subplot in the middle row shows the distribution
of the Intonation ground truth. This resembles the histogram of the MIR-1K data after corrections
using the “Silence-HMM” model, shown in the bottom right subplot. The middle-right subplot
shows the distribution of a small, professional dataset. It looks strikingly different from the rest.

performances before when selecting the samples. I generated pairs comparing either the baseline

performance to the original, or the corrected to the original.

I chose twenty seconds as a sample duration because this sample length gave listeners an idea
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Figure 6.5: Example of the baseline algorithm’s corrections. The algorithm determines note bound-
aries in the same way as the selected model, assigning them where silence occurs. It computes the
median of each note, and shifts it so that its new median is the nearest equal-tempered scale degree.

of how the algorithm performed on a full musical phrase. Any ambiguity due to the sample length

could be resolved by adding a comment. The sample names and the musical reasons behind the

choices are in Table 6.2. One surprise was that some of the samples included soft MIDI drones

that played the melody as a reference for the singer. This type of drone was nearly nonexistant in

the “Intonation” dataset used to train the model.

I generated a baseline algorithm to address the question of whether a simple pitch correction

technique could achieve comparable or superior results with significantly less time and resources.

The baseline retains many the characteristics of the proposed model: it shifts each note by a con-

stant to retain a natural sound, and assigns note boundaries where the pYIN pitch detection al-

gorithm assigned silence. Its pitch corrections, however, are based on the equal-tempered scale,

which simplifies it but also risk limiting its scope. For each note, it computes the median pitch

from the pYIN—which should be the longest note’s median in legato sections treated as a single

note. It then shifts the note so that its new median is the nearest equal-tempered scale degree.
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Subjective test samples from MIR-1K

Sample name Start second Description

Ariel 1 0 Slightly off throughout; One prominent note is off by a semi-
tone.

Ariel 2 23 Sharp throughout
Annar 4 3 In tune
Amy 7 27 An audible MIDI drone is playing the melody. Some notes are

on pitch, others are off.
Davidson 4 6 Very low voice. Pitch is mostly close but slightly off. A very

soft drone is playing the melody many octaves higher.
Bobon 4 2 Melody has some very long notes; Pitch is often off, usually

flat, often by about 50 cents
Geniusturtle 4 9 Many notes are off, one by a semitone. There are many sus-

tained notes and many jumps. A drone is playing the melody.
Stool 4 0 The pitch is off overall but never very far; The melody has

many jumps; there is an audible MIDI drone
Fdps 4 17 Slow tempo, jumps in the melody, a couple notes are off by

more than 50 cents
Jmzen 4 0 Very far off overall

Table 6.1: Description of the audio samples from MIR-1K used for the subjective listening test,
and their diverse characteristics that test the program under varying conditions
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Figure 6.5 shows the behavior of the baseline algorithm.

For both algorithms, the pitch shifts applied to the audio were computed using TD-PSOLA.

The only difference between the outputs is the amount of shift. In a subjective test conducted

in previous work, [49], I asked listeners who compared the original audio to the corrected audio

which version sounded more natural. Listeners did not hear a difference between samples, which

indicates that TD-PSOLA doesn’t produce a significant amount of artifacts that would make it

difficult to rate the quality of the algorithm only based on musical intonation instead of audio

quality.

Listeners were amateur or professional-level musicians. Each listener was assigned four sam-

ples: two pairs comparing the baseline outputs to the original, and two comparing the corrected

outputs to the original using the “Silence-HMM” model. The listeners did not know which algo-

rithms were used in each pair. They were asked to indicate which performance they considered

more accurate in terms of pitch, and could optionally leave comments. Tables 6.2 and 6.2 shows

the results and anonymized comments for the baseline and corrected samples, respectively. N

participants provided a total M responses.

Analysis

The results indicate at a qualitative level that the proposed approach was preferable to the baseline.

In half of the samples, listeners quite confidently chose the corrected version over the original, and

in some of the remaining ones the choice was difficult. This indicates that the proposed approach

didn’t tend to make the performances worse, even in cases where it failed to provide solid correc-

tions. The fact that listeners preferred it half of the time over 20 seconds indicates that it didn’t

make serious errors too often.

It is striking to notice that many of the samples where the proposed approach was selected

with confidence included a melody reference drone. As mentioned above, drones were nearly

nonexistant in the “Intonation” dataset. The fact that the model performed well on these samples

indicates that it might have learned how to effectively use reference pitches in the backing track,
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Sample name Score Comments

Ariel 1 0-2 “Not easy to hear the difference. Both are mostly in tune”; “Difficult.
Notes at 6 and 16 seconds are out of tune in both samples. The note
between 9 and 11 might be better in the original. The original is better,
neither is great.”

Ariel 2 0-3 “Both mostly in tune”; “Very close, both pretty much in tune”
Annar 4 2-0 N/A
Amy 7 1-1 - “Baseline gets a mild preference. The original gets an overall score

of 9/10”
Davidson 4 0-1 N/A
Bobon 4 0-2 “Both are pretty bad, but the original might be somewhat more in

tune”. “Baseline is so out of tune that it is difficult to figure out what
the melody is, but one can perhaps make more sense of the corrected
version”

Geniusturtle 7 2-0 N/A
Stool 4 0-2 “Strong preference for original. The baseline gets score 7/10”
Fdps 4 0-2 N/A
Jmzen 1 1-1 “Both are moderately out of tune, also the singer might not always hit

the right note; now one’s ears might be too tired”; “Very close, the
original is better (e.g., on second 7).”

Table 6.2: Baseline versus original. Some listeners provided comments. These are summarized in
this table, and randomized label names are replaced with the actual labels, unknown to the listeners.
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Sample name Score Comments

Ariel 1 0-2 N/A
Ariel 2 0.5-0.5 “No preference”
Annar 4 0-1 N/A
Amy 7 1-0 N/A
Davidson 4 3-0 “Both are very accurate, very difficult to tell the difference”; “Both

are pretty much in tune, a note at second 5 might be better in the cor-
rected version”; “Strong preference for corrected version, the original
gets overall score 9/10”

Bobon 4 1-1 N/A
Geniusturtle 7 3-0 “Corrected is clearly better”; “Corrected sounded clearly more in

tune”; “Corrected is slightly better, original gets score 6/10”
Stool 4 3-0 “Corrected is clearly better”; “Notes at seconds 4 and 9 are better in

corrected”
Fdps 4 1-1 “Original sounded clearly more in tune, starting from a pretty weak

base in corrected version” “Both are moderately out of tune - one’s
ear’s might be getting a bit tired at this point”

Jmzen 1 0-2 N/A

Table 6.3: Corrected versus original. Some listeners provided comments. These are summarized
in this table, and randomized label names are replaced with the actual labels, unknown to the
listeners.
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and that the reference melody made the solution more clear. This would mean that the model

is behaving as expected—basing its corrections on the backing track pitch content—instead of

learning, for example, a pitch distribution or “scale”, and mapping the vocals pitches to it while

ignoring the backing track. This could also mean that the model depends on the pitch content being

closely related to the melody.

The fact that the model without extension resulted in the histograms that most resembled the

ground-truth data indicates that the extension layer was either useless for predictions or caused

instability in training, despite pre-training of the feature extraction layers. One can hypothesize

whether the broad temporal context provided by the extension layer is necessary for musical into-

nation, or whether pitch adjustments only require the local context, provided by the hidden state of

the GRU, initialized with the last state of the previous note.
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CHAPTER 7

CONCLUSION

In this thesis, I introduce a novel data-driven algorithm for estimating and applying pitch correc-

tions in a monophonic vocal track, while using the backing track (also called accompaniment) as

a reference. The deep neural network used to predict pitch corrections is exposed to both incor-

rect intonation, for which it learns a correction, and intentional pitch variation, which it learns to

preserve. It represents pitch as a continuous value rather than a discrete set of notes. It does not

rely on a musical score, thus allowing for improvisation and harmonization in the singing perfor-

mance. Results on a convolutional neural network with a gated recurrent unit layer indicate that

spectral information in the backing and vocal tracks is useful for determining the amount of pitch

correction required at the note level.

The fact that musical pitch is not represented as a discrete set of notes also makes the algorithm

applicable to musical traditions that differ from Western pop music with respect to the scales and

pitch variation patterns used. The network in this thesis was trained on Western popular music, but

could also be trained on music from other genres and cultures.

The amateur “Intonation” dataset used as ground truth in this thesis has a very different pitch

distribution from that of a dataset built from professional performances. The results described in

this thesis are thus prototypical in nature. A challenge for future work is to obtain professional-

level data to permit more accurate prediction.

The current model is built on some strong assumptions. First, the backing track is assumed

to have clearly identifiable pitches—a chord progression—that serve as a reference for the vocals.

Second, a note’s pitch is assumed to be correctable by shifting the full note by a constant, which

minimizes changes to the original performance. The modifications preserve pitch nuances and

timbre, ensuring a natural sounding result that preserves the singer’s style. As these assumptions

are relaxed in future work, the performance of the model should improve in the current context,
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and the contexts to which the model can apply will expand. The model can also be developed to

address other aspects of the performance, such as rhythm.

The algorithm now first predicts the amount by which singing should be shifted in pitch, then

applies the shift in post processing. An objective for future work can be to extend the model so

that it directly predicts the pitch-shifted signal in an end-to-end model.

Future work will benefit from collaboration with human-computer interaction designers, music

theorists, and musicologists. A machine-learning-based algorithm can always make mistakes, and

these mistakes can be addressed over time from the feedback that these collaborations will provide.

More generally, the work presented here contributes to the recent field of music information

retrieval, which lies in the intersection of music and technology. The automatic pitch correction

algorithm introduced here illustrates how recent technological advances can be used in the service

of music. It also exemplifies the use of music technology to incorporate millenia of music theory

into artistic expression and development.

Digital apps represent a primary way to interact actively with music, and they are often a

first step for people getting started with making music. An app experience that is positive and

is perceived as leading to musical growth may increase the probability that the user evolves to

become a musician.
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CHAPTER 8

GLOSSARY

CNN Convolutional Neural Network. 42, 43

CQT Constant-Q Transform. xiii, 40, 42, 43, 45, 46, 49, 51, 53, 55, 56

DNN Deep Neural Network. xiii, xiv, 4, 5, 6, 33, 35, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 53

GRU Gated Recurrent Unit. xi, xiii, xiv, xv, 5, 6, 41, 43, 47, 49, 50, 56, 57, 70, 71, 81

HCQT Harmonic Constant-Q Transform. 42, 43

HMM Hidden Markov Model. xi, xiv, xv, 6, 44, 45, 48, 49, 54, 55, 57, 58, 71, 72, 73, 74, 75, 78

MIDI Musical Instrument Digital Interface. xi, xiv, xv, 27, 28, 36, 38, 41, 49, 54, 61, 62, 63, 65,

66, 67, 68, 69, 76

MIR Music Information Retrieval. 42, 44

MSE Mean-Squared Error. 51, 70, 71

NMF Non-negative Matrix Factorization. 33

pYIN Probabilistic YIN. xi, xiv, 44, 45, 47, 48, 54, 57, 58, 68, 72, 76

ReLU Rectified Linear Unit. 49

SIFT Scale-Invariant Feature Transform. 31

STFT Short-Time Fourier Transform. 35, 60

TD-PSOLA Time-Domain Pitch-Synchronous Overlap and Add. 40, 45, 51, 53, 78

84



REFERENCES

[1] Antares Audio Technologies. Auto-Tune Pro: Manual. https://www.antarestech.

com/mediafiles/documentation_records/10_Auto-Tune_Live_Manual.

pdf. [Online; Accessed June 10th, 2020]. 2018.

[2] S. Wager et al. “Intonation: A Dataset of Quality Vocal Performances Refined by Spectral

Clustering on Pitch Congruence”. In: Int. Conf. Acoustics, Speech and Signal Processing

(ICASSP). IEEE. 2019.

[3] L. R. Rabiner. “Readings in Speech Recognition”. In: 1990. Chap. A Tutorial on Hidden

Markov Models and Selected Applications in Speech Recognition, pp. 267–296.

[4] J. Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence

Modeling”. In: NeurIPS Workshop Deep Learning. 2014, pp. 166–170.

[5] Jeffrey Hass. Introduction to Computer Music: Vol. 1. https://cmtext.indiana.

edu/toc.php. [Online; Accessed February 13th, 2021]. 2019.

[6] R. Parncutt and G. Hair. “A Psychocultural Theory of Musical Interval: Bye Bye Pythago-

ras”. In: Music Perception: An Interdisciplinary Journal 35.4 (2018), pp. 475–501.

[7] F. Villano. Victor Wooten’s Music and Nature Camps. https://makingmusicmag.

com/victor-wootens/. [Online; Accessed June 14th, 2020].

[8] F. Gafori. Theorica Musice Franchini Gafuri Laudensis ([Reprod.]) https://gallica.

bnf.fr/ark:/12148/bpt6k58171q.f36. [Online; Accessed February 13th, 2021].

1492.

[9] Mount Salvation Salton Sea (Pinterest). Monochord. https://www.pinterest.com/

pin/786300416163830080/. [Online; Accessed June 30th, 2020].

[10] P. Weiss and R. Taruskin. Music in the Western World. Cengage Learning, 2007.

85



[11] D. P. Goldman. “A New Look at Zarlino’s Theory and its Effect on his Counterpoint Doc-

trine”. In: Theory and Practice 16 (1991), pp. 163–177.

[12] The Editors of Encyclopaedia Britannica. Equal Temperament. https://www.britannica.

com/art/equal-temperament. [Online; Accessed June 11th, 2020]. 2019.

[13] J. Devaney, J. Wild, and I. Fujinaga. “Intonation in Solo Vocal Performance: A Study of

Semitone and Whole Tone Tuning in Undergraduate and Professional Sopranos”. In: Proc.

Int. Symp. Performance Science. 2011, pp. 219–224.

[14] J. P. Burkholder, D. J. Grout, and C. V. Palisca. A History of Western Music: 8th Edition.

WW Norton & Company, 2019.

[15] R. Ramanna. “The Structure of Raga Music”. In: Current Science 68.9 (1995), pp. 897–916.

[16] W. J. Arnold. “L’Intonation Juste dans la Théorie Ancienne de l’Inde: Ses Applications aux
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