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Abstract—Conventional audio coding technologies commonly
leverage human perception of sound, or psychoacoustics, to
reduce the bitrate while preserving the perceptual quality of the
decoded audio signals. For neural audio codecs, however, the
objective nature of the loss function usually leads to suboptimal
sound quality as well as high run-time complexity due to the large
model size. In this work, we present a psychoacoustic calibration
scheme to re-define the loss functions of neural audio coding
systems so that it can decode signals more perceptually similar
to the reference, yet with a much lower model complexity. The
proposed loss function incorporates the global masking threshold,
allowing the reconstruction error that corresponds to inaudible
artifacts. Experimental results show that the proposed model
outperforms the baseline neural codec twice as large and con-
suming 23.4% more bits per second. With the proposed method,
a lightweight neural codec, with only 0.9 million parameters,
performs near-transparent audio coding comparable with the
commercial MPEG-1 Audio Layer III codec at 112 kbps.

Index Terms—Audio coding, deep neural networks, psychoa-
coustics, network compression

I. INTRODUCTION

AUDIO coding, a fundamental set of technologies in
data storage and communication, compresses the original

signal into a bitstream with a minimal bitrate (encoding)
without sacrificing the perceptual quality of the recovered
waveform (decoding) [1], [2]. In this paper we focus on the
lossy codecs, which typically allow information loss during
the process of encoding and decoding only in inaudible audio
components. To this end, psychoacoustics is employed to
quantify the audibility in both time and frequency domains.
For example, MPEG-1 Audio Layer III (also known as MP3),
as a successful commercial audio codec, achieves a near-
transparent quality at 128 kbps by using a psychoacoustic
model (PAM) [2]. Its bit allocation scheme determines the
number of bits allocated to each subband by dynamically
computing the masking threshold via a PAM and then allowing
quantization error once it is under the threshold [3].

Recent efforts on deep neural network-based speech coding
systems have made substantial progress on the coding gain
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[4]–[6]. They formulate coding as a complex learning process
that converts an input to a compact hidden representation. This
poses concerns for edge applications with the computational
resource at a premium: a basic U-Net audio codec contains ap-
proximately 10 million parameters [7]; in [8], vector quantized
variational autoencoders (VQ-VAE) [9] employs WaveNet [5]
as a decoder, yielding a competitive speech quality at 1.6
kbps, but with 20 million parameters. In addition, recent neural
speech synthesizers employ traditional DSP techniques, e.g.,
linear predictive coding (LPC), to reduce its complexity [10].
Although it can serve as a decoder of a speech codec, LPC
does not generalize well to non-speech signals.

Perceptually meaningful objective functions have shown an
improved trade-off between performance and efficiency. Some
recent speech enhancement models successfully employed
perceptually inspired objective metrics, e.g. perceptual attrac-
tors [11], energy-based weighting [12], perceptual weighting
filters from speech coding [13], and global masking thresholds
[14] [15], while they have not targeted audio coding and
model compression. Other neural speech enhancement systems
implement short-time objective intelligibility (STOI) [16] and
perceptual evaluation of speech quality (PESQ) [17] as the
loss [18], [19]. These metrics may benefit speech codecs,
but do not faithfully correlate with subjective audio quality.
Meanwhile, PAM serves as a subjectively salient quantifier for
the sound quality and is pervasively used in the standard audio
codecs. However, integrating the prior knowledge from PAM
into optimizing neural audio codecs has not been explored.

In this paper, we present a psychoacoustic calibration
scheme to improve the neural network optimization process,
as an attempt towards efficient and high-fidelity neural audio
coding (NAC). With the global masking threshold calculated
from a well-known PAM [20], the scheme firstly conducts
priority weighting making the optimization process focus more
on audible coding artifacts in frequency subbands with the
relatively weaker masking effect, while going easy otherwise.
The scheme additionally modulates the coding artifact to
ensure that it is below the global masking threshold, which is
analogous to the bit allocation algorithm in MP3 [2]. This is,
to our best knowledge, the first method to directly incorporate
psychoacoustics to neural audio coding.

II. END-TO-END NEURAL AUDIO CODING

A. Lightweight NAC Module

Given that neural codecs can suffer from a large inference
cost due to their high model complexity, one of our goals is
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ŝ(i)

h(i)
512

s ≈ ŝ =
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Fig. 1: Schematic diagrams for NAC. The residual coding
pipeline for CMRL consists of multiple NAC autoencoding
modules. Training and test-time encoding uses all blocks while
the test-time decoding uses only the decoder portion.

to demonstrate the advantage of the proposed pychoacoustic
loss function on model compression. To that end, we choose
a compact neural audio coding (NAC) module as the building
block. The NAC module is a simplified version of a convo-
lutional neural network (CNN)-based autoencoder [21] with
only 450K parameters. As shown in Fig. 1, it consists of a
stack of bottleneck blocks as in [22], each of which performs
a ResNet-style residual coding [23]. The code vector produced
by its encoder part is discretized into a bitstring via the soft-
to-hard quantization process originally proposed in [24] for
image compression. We detail the description as follows.

1) Encoder: The CNN encoder maps an input frame of
T time-domain samples, s ∈ RT to the code vector, i.e.,
z ← Fenc(s). Striding during the 1D convolution operation
can downsample the feature map. For example, z ∈ RT/2

when the stride is set to be 2 and applied once during encoding.
The detailed architecture is summarized in TABLE I.

2) Soft-to-hard quantization: Quantization replaces each
real-valued element of the code vector z with a kernel value
chosen from a set of K representatives. We use soft-to-hard
quantizer [24], a clustering algorithm compatible with neural
networks, where the representatives are also trainable. During
training, in each feedforward routine, the c-th code value
zc is assigned to the nearest kernel out of K, β ∈ RK ,
which have been trained so far. The discrepancy between
zc and the chosen kernel hc ∈ {β1, β2, · · · , βK} (namely
the quantization error) is accumulated in the final loss, and
then reduced during training via backpropagation (i.e., by
updating the means and assignments). Specifically, the cluster
assignment is conducted by calculating the distance, d ∈ RK ,
between the code value and all kernels, and then applying the
softmax function to the negatively scaled distance to produce
a probabilistic membership assignment: a ← softmax(−αd).
Although we eventually need a hard assignment vector a, i.e., a
one-hot vector that indicates the closest kernel, during training
the quantized code h is acquired by a soft assignment, a>β,
for differentiability. Hence, at the test time, a replaces a by
turning on only the maximum element. Note that a larger

TABLE I: The 1D-CNN NAC module architecture (Fig. 1).
The shape of feature maps is (frame length, channel); the
kernel shape is (kernel size, in channel, out channel).

System Layer Input shape Kernel shape Output shape

Encoder

Change channel (512, 1) (9, 1, 100) (512, 100)

1st bottleneck (512, 100)
(9, 100, 20)

]
×2(9, 20, 20)

(9, 20, 100)
(512, 100)

Downsampling (512, 100) (9, 100, 100) (256, 100)

2nd bottleneck (256, 100)
(9, 100, 20)

]
×2(9, 20, 20)

(9, 20, 100)
(256, 100)

Change channel (256, 100) (9, 100, 1) (256, 1)
Soft-to-hard quantization & Huffman coding

Decoder

Change channel (256, 1) (9, 1, 100) (256, 100)

1st bottleneck (256, 100)
(9, 100, 20)

]
×2(9, 20, 20)

(9, 20, 100)
(256, 100)

Upsampling (256, 100) (9, 100, 100) (512, 50)

2nd bottleneck (512, 50)
(9, 50, 20)

]
×2(9, 20, 20)

(9, 20, 50)
(512, 50)

Change channel (512, 50) (9, 50, 1) (512, 1)

scaling factor α makes a harder, making it more similar to
a. Huffman coding follows to generate the final bitstream.

3) Decoder: The decoder recovers the original signal from
the quantized code vector: ŝ = Fdec(h), by using an architec-
ture mirroring that of the encoder (TABLE I). For upsampling,
we use a sub-pixel convolutional layer proposed in [25] to
recover the original frame length T .

4) Bitrate Analysis and Control: The lower bound of the
bitrate is defined as |h|H(h), where |h| is the number of
down-sampled and quantized features per second. The entropy
H(h) forms the lower bound of the average amount of bits
per feature. While |h| is a constant given a fixed sampling
rate and network topology, H(h) is adaptable during train-
ing. As detailed in [24], basic information theory calculates
H(h) as −∑k p(βk) log2 p(βk), where p(βk) denotes the
occurrence probability of the k-th cluster defined in the soft-
to-hard quantization. Therefore, during model training, H(h)
is added to the loss function as a regularizer navigating the
model towards the target bitrate. Initiated as 0.0, the blending
weight increases by 0.015 if the actual bitrate overshoots the
target and decreases by that amount otherwise. Because this
regularizer is well defined in the literature [24] [21] [26], we
omit it in following sections for simplicity purposes.

B. Cross-Module Residual Learning

To scale up for high bitrates, cross-module residual learning
(CMRL) [26] implants the multistage quantization scheme
[27] by cascading residual coding blocks (Fig. 1). CMRL
decentralizes the neural autoencoding effort to a chain of
serialized low complexity coding modules, with the input
of i-th module being s(i) = s − ∑i−1

j=1 ŝ
(j). That said,

each module only encodes what is not reconstructed from
preceding modules, making the system scalable. Concretely,
for an input signal s, the encoding process runs all N
autoencoder modules in a sequential order, which yields the
bitstring as a concatenation of the quantized code vectors:
h =

[
h(1)>,h(2)>, · · · ,h(N)>]>. During decoding, all de-
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Fig. 2: Visualization of the masker detection, individual and
global masking threshold calculation for an audio input.

coders, Fdec(h
(i)) ∀i, run to produce the reconstructions that

sum up to approximate the initial input signal as
∑N

i=1 ŝ
(i).

III. THE PROPOSED PSYCHOACOUSTIC CALIBRATION

The baseline model uses the sum of squared error (SSE)
defined in the time domain: L1(s||ŝ) =

∑N
i=1

∑T
t=1

(
ŝ
(i)
t −

s
(i)
t

)2
. In addition, another loss is defined in the mel-

scaled frequency domain to weigh more on the low fre-
quency area, as the human auditory system does, L2(y||ŷ) =∑N

i=1

∑L
l=1

(
y
(i)
l − ŷ

(i)
l

)2
, where y stands for a mel spectrum

with L frequency subbands as proposed in [21].

A. Psychoacoustic Model-1
Without loss of generality, we choose a basic PAM that

computes simultatenous masking effects for the input signal
as a function of frequency, while the temporal masking effect
is not integrated. According to PAM-1 defined in [2], for an
input frame, it (a) calculates the logarithmic power spectral
density (PSD) p; (b) detects tonal and noise maskers, followed
by decimation; (c) calculates masking threshold for individual
tonal and noise maskers U ∈ RF×R,V ∈ RF×B , where R
and B are the number of maskers. The global masking thresh-
old at frequency bin f is accumulated from each individual
masker in (c) along with the absolute hearing thresholdQ [20],
as mf = 10 log10

(
100.1Qf +

∑
r 10

0.1Uf,r +
∑

b 10
0.1Vf,b

)
.

Fig. 2 shows an example of p of a signal and its global
masking threshold based on the simultaneous masking effect.

Global masking threshold as discussed is used in various
conventional audio codecs to allocate minimal amount of
bits without losing the perceptual audio quality. Typically,
the bit allocation algorithm optimizes nf/mf (NMR), where
nf denotes the power of the noise (i.e., coding artifacts) in
the subband f and mf is the power of the global masking
threshold. In an iterative process, each time the bit is assigned
to the subband with the highest NMR until no more bit can
be allocated [28]–[30]. The global masking curve acquired via
PAM-1 comprises both input-invariant prior knowledge as in
the absolute hearing threshold and input-dependent masking
effects. We propose two mechanisms to integrate PAM-1 into
NAC optimization: priority weighting and noise modulation.

B. Priority Weighting
During training we estimate the logarithmic PSD p out of

an input frame s, as well the global masking threshold m to

define a perceptual weight vector, w = log10(
100.1p

100.1m +1): the
log ratio between the signal power and the masked threshold,
rescaled from decibel. Accordingly, we define a weighting
scheme that pays more attention to the unmasked frequencies:

L3(s||ŝ) =
∑

i

∑

f

wf

(
x
(i)
f − x̂

(i)
f

)2
, (1)

where x
(i)
f and x̂

(i)
f are the f -th magnitude of the Fourier

spectra of the input and the recovered signals for the i-th
CMRL module. The intuition is that, if the signal’s power is
greater than its masking threshold at the f -th frequency bin,
i.e. pf > mf , the model tries hard to recover this audible tone
precisely: a large wf enforces it. Otherwise, for a masked tone,
the model is allowed to generate some reconstruction error.
The weights are bounded between 0 and ∞, whose smaller
extreme happens if, for example, the masking threshold is too
large comparing to the sufficiently soft signal.

C. Noise Modulation

The priority weighting mechanism can accidentally result
in audible reconstruction noise, exceeding the mask value mf ,
when wf is small. Our second psychoacoustic loss term is to
modulate the reconstruction noise by directly exploiting NMR,
nf/mf , where n is the power spectrum of the reconstruction
error s −∑N

i=1 ŝ
(i) from all N autoencoding modules. We

tweak the greedy bit allocation process in the MP3 encoder
that minimizes NMR iteratively, such that it is compatible to
the stochastic gradient descent algorithm as follows:

L4 = max
f

(
ReLU

(
nf
mf
− 1

))
. (2)

The rectified linear units (ReLU) function excludes the contri-
bution of the inaudible noise to the loss when nf/mf−1 < 0.
Out of those frequency bins where the noise is audible, the
max operator selects the one with the largest NMR, which
counts towards the total loss. The process as such resembles
MP3’s bit allocation algorithm, as it tackles the frequency bin
with the largest NMR for each training iteration.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Preparation and Hyperparameters: Our training
dataset consists of 1,000 single-channel clips of commercial
music, spanning 13 genres. Each clip is about 20 seconds
long, amounting to about 5.5 hours of play time. The sampling
rate is 44.1 kHz and downsampled to 32 kHz for the lower
bitrate setup. Each frame contains T = 512 samples with an
overlap of 32 samples, where a Hann window is applied to the
overlapping region. Note that the choice of frame size is to
align the system’s hyperparameters to the previous work [21],
[26], [31], but it does not necessarily mean that 512 results in
an enough frequency resolution for PAM-based lost terms. For
training, hyperparameters are found based on validation with
another 104 clips: 128 frames for the batch size; α = 300
for the initial softmax scaling factor; 2× 10−4 for the initial
learning rate of the Adam optimizer [32], and 2 × 10−5
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Fig. 3: Subjective scores from the MUSHRA tests.

for the second cascaded modules; 64 and 32 kernels for the
quantization for low and high bitrate cases, respectively; 50
and 30 for the number of epochs to train the first and the
second modules in CMRL, respectively.

2) Competing Models: We consider two baseline models:
Model-A trained by the SSE (L1) and Model-B also learns on
the mel-frequency loss (L2) as in recent neural speech codecs
[21], [26], [31]. We validate the priority weighting loss (L3) in
Model-C, and noise modulation (L4) in Model-D. All models
are based on the architecture discussed in Section.II-A.

L = L1 : Model-A, L = L1 + λL2 : Model-B,
L = L1 + λ(L2 + L3) : Model-C,
L = L1 + λ(L2 + L3 + L4) : Model-D.

Note that the scale for the time-domain SSE L1 differs from
the other frequency-domain loss terms. Adapting from the
setup in [21], we find that simply choosing one blending
weight λ = 0.1 for L2, L3 and L4 shows good results.

Each model is also specified by the target bitrate and model
complexity, e.g., “Model-A 168kbps-2AE” is equipped with
two concatenated AEs, trained by L1 for a bitrate of 168 kbps.

B. Experimental Results

Ten audio experts participated our two MUSHRA listening
tests for low and high bitrate settings using headphones. We
post-screened one of them as per the guideline [33]. We
randomly sample 13 songs, one per genre, and fix them
throughout all tests. Fig. 3 summarizes the test results. Each
box extends from the lower to the upper quartile with a 95%
confidence interval (the notch) of the median (the orange hard
line). The mean scores and outliers are also shown in the green
dotted line and circles, respectively.

The low bitrate session targets at 64 kbps with the sample
rate of 32 kHz. As illustrated in Fig. 3 (a), the baseline trained
purely on SSE does not perform well (Model-A). However, the
additional loss term L2 defined in the mel-scaled frequency
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Fig. 4: The effect of the proposed noise modulation loss.

domain improves the performance (Model-B 79kbps 2AE>
Model-A 79kbps 2AE). Finally, via psychoacoustic weighting,
Model-C with a smaller architecture and lower bitrate (i.e.,
one AE at 64 kbps) is on par with Model-B with two AEs
at 79 kbps. Model-D with both PAM-inspired loss terms
receives the highest subjective score among the NAC sys-
tems, which justifies the effectiveness of the proposed method
with a noticeable coding gain. However, since our codec is
lightweight as a neural network, Model-D does not outperform
the commercial MP3 codec from Adobe Audition® (licensed
from Fraunhofer IIS and Thomson). We expect that a more
complex model can catch up with this gap by employing the
proposed psychoacoustic loss functions.

The high bitrate session includes the hidden reference, two
anchors (filtered at 3.5 kHz and 7 kHz), the commercial MP3
codec at 112 kbps, and four NAC systems, sampled at 44.1
kHz. In Fig. 3 (b), with both priority weighting and noise
modulation, Model-D outperforms Model-A which is twice as
large and performs at a 64.3% higher bitrate. Model-D is also
superior to Model-C at the same bitrate and model complexity
thanks to noise modulation. With 900K parameters, Model-D
achieves almost transparent quality similar to MP3 at the same
bitrate (Model-D 112kbps-2AE vs. MP3-112 kbps).

The superiority of Model-D over Model-C is additionally
explained in Fig. 4. While Model-C can result in audible
reconstruction error (organge regions in (a)), the noise modu-
lation loss (L4) in Model-D suppresses it under the masking
curve in (b), leading to a higher perceptual quality.

V. CONCLUSION

We showed that incorporating the simultaneous masking
effect in the objective function is advantageous to NAC in
terms of the coding gain and model efficiency. Although the
system is based on PAM-1, it successfully proved the concept
and suggests that a more advanced PAM, e.g., by employing
temporal masking, will improve the performance further. We
also publicized all source codes and demo signals1.

1Available at https://saige.sice.indiana.edu/research-projects/pam-nac

https://saige.sice.indiana.edu/research-projects/pam-nac
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[19] J. M. Martı́n-Doñas, A. M. Gomez, J. A. Gonzalez, and A. M. Peinado,
“A deep learning loss function based on the perceptual evaluation of
the speech quality,” IEEE Signal processing letters, vol. 25, no. 11, pp.
1680–1684, 2018.

[20] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Pro-
ceedings of the IEEE, vol. 88, no. 4, pp. 451–515, 2000.

[21] S. Kankanahalli, “End-to-end optimized speech coding with deep neural
networks,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2018.

[22] K. Tan, J. Chen, and D. Wang, “Gated residual networks with dilated
convolutions for monaural speech enhancement,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 27, pp. 189–198,
2019.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[24] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte,
L. Benini, and L. V. Gool, “Soft-to-hard vector quantization for end-
to-end learning compressible representations,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 1141–1151.

[25] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 1874–1883.

[26] K. Zhen, J. Sung, M. S. Lee, S. Beack, and M. Kim, “Cascaded cross-
module residual learning towards lightweight end-to-end speech coding,”
in Proceedings of the Annual Conference of the International Speech
Communication Association (Interspeech), 2019.

[27] A. Gersho and V. Cuperman, “Vector quantization: A pattern-matching
technique for speech coding,” IEEE Communications magazine, vol. 21,
no. 9, pp. 15–21, 1983.

[28] D. Salomon, Data compression: the complete reference. Springer
Science & Business Media, 2004.

[29] C. H. Yen, Y. S. Lin, and B. F. Wu, “A low-complexity MP3 algorithm
that uses a new rate control and a fast dequantization,” IEEE Transac-
tions on Consumer Electronics, vol. 51, no. 2, pp. 571–579, 2005.

[30] S. Zamani and K. Rose, “Spatial audio coding without recourse to back-
ground signal compression,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 720–724.

[31] K. Zhen, M. S. Lee, J. Sung, S. Beack, and M. Kim, “Efficient and scal-
able neural residual waveform coding with collaborative quantization,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 361–365.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2015.

[33] ITU-R Recommendation BS 1534-1, “Method for the subjective assess-
ment of intermediate quality levels of coding systems (MUSHRA),”
2003.


	Introduction
	End-to-end neural audio coding
	Lightweight NAC Module
	Encoder
	Soft-to-hard quantization
	Decoder
	Bitrate Analysis and Control

	Cross-Module Residual Learning

	The Proposed Psychoacoustic Calibration
	Psychoacoustic Model-1
	Priority Weighting
	Noise Modulation

	Experiments
	Experimental Setup
	Data Preparation and Hyperparameters
	Competing Models

	Experimental Results

	Conclusion
	References

