
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2659

Boosted Locality Sensitive Hashing:
Discriminative, Efficient, and Scalable
Binary Codes for Source Separation
Sunwoo Kim, Student Member, IEEE, and Minje Kim, Senior Member, IEEE

Abstract—We propose a novel adaptive boosting approach to
learn discriminative binary hash codes, boosted locality sensitive
hashing (BLSH), that can represent audio spectra efficiently.
We aim to use the learned hash codes in the single-channel
speech denoising task by designing a nearest neighborhood
search method that operates in the hashed feature space. To
achieve the optimal denoising results given the highly compact
binary feature representation, our proposed BLSH algorithm
learns simple logistic regressors as the weak learners in an
incremental way (i.e., one by one) so that each weak learner is
trained to complement the mistake its predecessors have made.
Upon testing, their binary classification results transform each
spectrum of noisy speech into a bit string, where the bits are
ordered based on their significance, adding scalability to the
denoising system. Simple bitwise operations calculate Hamming
distance to find the K-nearest matching hashed frames in the
dictionary of training noisy speech spectra, whose associated ideal
binary masks are averaged to estimate the denoising mask for
that test mixture. In contrast to the locality sensitive hashing
method’s random projections, our proposed supervised learning
algorithm trains the projections such that the distance between
the self-similarity matrix of the hash codes and that of the
original spectra is minimized. Likewise, the process conceptually
aligns to the Adaboost algorithm, although ours is specialized in
learning binary features for source separation rather than clas-
sification. Experimental results on speech denoising suggest that
the BLSH algorithm learns more discriminative representations
than Fourier or mel spectra and the nonlinear kernels derived
from them. Our compact binary representation is expected to
facilitate model deployment onto resource-constrained environ-
ments, where comprehensive models (e.g., deep neural networks)
are unaffordable.

Index Terms—Speech Enhancement, Locality Sensitive Hash-
ing, AdaBoost, Kernel Methods

I. INTRODUCTION

SOURCE separation is an essential module for many
practical audio applications, e.g., in speech communica-

tion, automatic speech recognition, a hearing aid, etc. Deep
learning-based source separation models have been proposed
to improve the single-channel speech denoising and speech
separation performance with performances nearing the ideal

The full citation to the official IEEE publication: S. Kim and M. Kim,
”Boosted Locality Sensitive Hashing: Discriminative, Efficient, and Scalable
Binary Codes for Source Separation,” in IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 30, pp. 2659-2672, 2022, doi:
10.1109/TASLP.2022.3196877.

S. Kim and M. Kim are with Department of Intelligent Systems En-
gineering, Indiana University, Bloomington, IN 47408 USA (email: kim-
sunw@indiana.edu; minje@indiana.edu). This material is based upon work
supported by the National Science Foundation under Award Number:
1909509.

ratio masking results (IRM) [1]–[6], or sometimes exceeding
them [7]–[10]. Despite the recent success of neural network
architectures, deep learning applications come with huge mem-
ory size and high computational complexity which makes it
intractable for deployment into resource-constrained devices,
even just for feedforward inferences. For mobile and em-
bedded applications that require speaker separation and noise
cancellation in real life scenarios, it is crucial to solve this
issue to ensure quality speech communication.

To solve this issue, there is ongoing research to reduce
the model size and complexity while trying to preserve the
accuracy of the models despite the reduction. Optimization
of convolutional operators allowed for building small, low la-
tency models. Namely, depthwise separable filters (MobileNet)
[11], fire modules (SqueezeNet) [12], and group pointwise
convolutions with channel shuffle operation (ShuffleNet) have
been explored to create lightweight deep convolution neural
networks [13]. Another popular approach to reducing model
complexity is pruning less active weights [14], filters [15],
[16], and even layers [17]. The other dimension of network
compression is to reduce the number of bits to represent the
network parameters, sometimes down to just one bit [18]–[21],
one of its kind has shown promising performances in speech
denoising [22], [23].

In this study we take another route to lightweight source
separation by redefining the problem as a K-nearest neigh-
borhood (KNN) search task: for a given test mixture, the
separation is done by finding the nearest mixture spectra in
the training set, and consequently their corresponding ideal
binary mask (IBM) vectors [24]. However, the complexity
of the search process linearly increases with the size of the
training data and the frequency dimension of the spectrum.
We expedite this tedious process by converting the query and
database spectra into a hash code to exploit bitwise matching
operations during the search process. To this end, we start from
locality sensitive hashing (LSH), which is to construct hash
functions such that similar data points are more probable to
collide in the hashed space, or, in other words, more similar in
terms of Hamming distance [25]–[28]. With increasing number
of bits, the Hamming distance between binary hash codes will
asymptotically approach the Euclidean distance between pairs
of data. While simple and effective, the random projection-
based nature of the LSH process is not trainable, thus limiting
its performance when one uses it for a specific problem.

Under the requirement of having a small number of bits in
the codebook, several authors have studied machine learning

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2660

approaches to learn more compact codes such as semantic
hashing [29] and spectral hashing [30], which are either with
a computing-intensive conversion process (semantic hashing)
or not scalable to high-dimensional or a large amount of data
(spectral hashing). As an alternative, we propose a learnable,
but still projection-based hash function, Boosted LSH (BLSH),
so that the separation is done in the efficient binary space,
which is learned in a data-driven way rather than relying
on the random projections [31]–[33]. BLSH reduces the re-
dundancy in the randomly generated LSH codes by relaxing
the independence assumption among the projection vectors
and learning them sequentially in a boosting manner such
that they complement one another, an idea shown in search
applications [32]–[35]. BLSH learns a set of linear classifiers
(i.e., perceptrons), whose binary classification results serve as
a hash code. To learn the sequence of binary classifiers we
are based on the adaptive boosting (AdaBoost) technique [36],
while we redefine the original classification-based AdaBoost
algorithm so that it works on our separation problem. Since
the binary representation is to improve the quality of the hash
code-based KNN search during the separation, the objective
of our training algorithm is to maximize the representativeness
of the hash codes by minimizing the loss between the two
self-similarity matrices (SSM) constructed from the original
spectra and from the hash codes.

BLSH can also be seen as an embedding technique with a
constraint that the embedding has to be binary. Finding embed-
dings that preserve the semantic similarity is a popular goal in
many disciplines. In natural language processing, Word2Vec
[37] or GloVe [38] methods use pairwise metric learning
to retrieve a distributed contextual representation that retains
complex syntactic and semantic relationships within docu-
ments. Another model that trains on similarity information is
the Siamese networks [39], [40] which learn to discriminate
a pair of examples. Utilizing similarity information has also
been explored in the source separation community by posing
denoising as a segmentation problem in the time-frequency
plane with an assumption that the affinities between time-
frequency regions could condense complex auditory features
together [41]. Inspired by studies of perceptual grouping [42],
in [41] local affinity matrices were constructed out of cues
specific to that of speech. Then, spectral clustering segments
the weighted combination of similarity matrices to unmix
speech mixtures. In our framework, we propose to maintain
the original similarity among binary hash codes, so a test-
time mixture frame can quickly find a few matching frames
from the training dataset through the KNN search. Then, from
the matching training mixtures we can estimate the masking
vector.

Our framework resembles the deep clustering method (DC)
whose objective is to approximate the ideal pairwise affinity
matrix induced from ideal binary masks [4]. DC utilizes a
neural network encoder that produces discriminant spectro-
gram embeddings which are then partitioned to separate the
speakers from a mixture. To make the partitioning feasible,
e.g., by using k-means clustering, DC or its extension deep
attractor network (DAN) learns an embedding space where
each speaker’s time-frequency units are concentrated around a

centroid [3]. ChimeraNet extended the work by utilizing deep
clustering as a regularizer for TF-mask approximation [43].
Our proposed framework also learns an embedding space, but
instead of estimating an embedding vector per TF bin, we
learn per-frame binary hash codes, which are then used to
estimate masks. Moreover, given that the embedding vectors
must be binary, we need to develop a learning algorithm that
accommodates the discrete nature.

We evaluate BLSH on the single-channel denoising task
and empirically show that with respect to the efficiency, our
system compares favorably to deep learning architectures and
generalizes well over unseen speakers and noises. Since binary
codes can be cheaply stored and the KNN search is expedited
with bitwise operations, we believe this to be a good alternative
for the speech enhancement task where efficiency matters.

This paper extends our preliminary study [44], where we
proposed the initial BLSH version and KNN search approach
for speech denoising. In this journal version, we add new
contributions summarized as follows:
• We provide an in-depth explanation of individual modules

of the BLSH algorithm.
• We analyze the behavior of both LSH and BLSH frame-

works on self-similarity targets generated from nonlinear
feature extraction methods: mel scale and radial basis
function transformations.

• We provide a thorough comparison against deep learning
baselines including one of the state-of-the-art source
separation models, Conv-TasNet [8].

The rest of the paper is organized as follows. We first
describe the KNN based source separation in Section II.
Section III introduces the proposed BLSH algorithm, which
aims to learn from various SSM targets, such as the ones
constructed from short-time Fourier transform (STFT) and mel
spectra as well as a nonlinear kernel function. Experimental
setup is presented in Section IV. Evaluation results, discussion,
and complexity analysis are presented in Section V. Final
concluding remarks are given in Section VI.

II. THE KNN SEARCH-BASED SOURCE SEPARATION

In this section, we present the baseline KNN search-based
source separation frameworks for mask estimation, which
finds the KNNs in two different ways: using the spectral
coefficients and LSH codes.

A. Baseline 1: Direct Spectral Matching

We assume that if two mixture spectra are similar, they
consist of similar sources. Hence, their IBMs must be similar,
too. The KNN search-based source separation requires a large
reference dictionary of training examples, whose IBMs are
known ahead of time. For a given test example, the separation
algorithm searches for only KNN to the query spectra to infer
its mask.

Let H ∈ RD×T be the normalized feature vectors from
T frames of training mixture examples, e.g., noisy speech
spectra. T can potentially be a very large number as it
exponentially grows with the number of sources. Out of many
potential choices, we are interested in STFT and mel spectra

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2661

Algorithm 1 KNN source separation

1: Input: x, H , Y
B A test mixture vector, the dictionary, and IBMs

2: Output: ŷ B A denoising mask vector
3: Initialize an empty set N = ∅ and Amin = 0
4: for t← 1 to T do
5: if |N | <K then
6: Add t to N
7: Update Amin ← mink∈N Scos(x,H:,k)
8: else if Scos(x,H:,t) > Amin then
9: Replace arg mink∈N Scos(x,H:,k) in N with t

10: Update Amin ← mink∈N Scos(x,H:,k)
11: end if
12: end for
13: return ŷ ← 1

K

∑
k∈N Y:,k

as the feature vectors. For example, if H is from magnitudes
of STFT on the training mixture signals, D corresponds to
the number of Fourier transform’s subbands F , i.e., D = F ,
while for mel spectra D < F .

Columns of H are normalized with their L2 norm. We also
prepare their corresponding IBM vectors, Y ∈ {0, 1}F×T ,
whose dimension F matches that of STFT, regardless whether
we use STFT or mel spectra as input. For a test mixture
spectrum, x̄ ∈ CF , our goal is to estimate a denoising mask,
ŷ ∈ RF , to recover the source by masking, ŷ � x̄. While
masking is applied to the complex STFT spectrum x̄, the
KNN search can be done in the D-dimensional feature space
x ∈ RD, e.g., mel spectra or full Fourier coefficients.

Algorithm 1 describes the KNN source separation proce-
dure. We use notation S as the affinity function, which denotes
the cosine similarity function with a subscript: Scos. For a given
pair of L2-normalized D-dimensional feature vectors a and b,
it is defined as an inner product:

Scos(a, b) = a>b (1)

For each frame x in the test-time mixture signal, we find the
K closest frames in the reference database (line 4 to 9), which
form the set of indices ofKNN,N = {τ1, τ2, · · · , τK}. Using
them, we find the corresponding IBM vectors from Y and take
their average (line 13).

In this proposed separation framework, finding K frames
that best approximate the query ensures quality source separa-
tion. Although it is well known that simple Euclidean or cosine
distance cannot represent the semantic similarity between
high-dimensional data points, preserving the local similarity in
the feature space and the SSM can lead to successful manifold
learning [45]–[47]. In this regard, our separation method also
requires the reference database to be sufficiently large to
represent the manifold of the data distribution. However, a
large T is burdensome not only for storage but also during
the test time since the distance computation between x and
H (floating-point inner product) is costly.

B. Baseline 2: LSH with Random Projections
We can reduce the storage overhead and expedite Algorithm

1 using hashed spectra and the Hamming similarity between

Masking
vector
dictionary

Mixture
spectrum
(testing)

Estimated
masking
vector

Average

Mixture
spectra
dictionary

Hashing
(done in
advance)

Hashing
(done in real time)

x
<latexit sha1_base64="FEtyduG0if9M3tzJFP6HPmoOSGs=">AAACA3icZZDLSgMxFIYzXmu9VV26CRbBRWlnqqDLoi5cVrQXaItk0jM1NpchyUjL0KVLt/oQ7sStD+Iz+BKml4XaA4Hv/Ml/OPnDmDNjff/LW1hcWl5Zzaxl1zc2t7ZzO7t1oxJNoUYVV7oZEgOcSahZZjk0Yw1EhBwaYf9ifN94BG2Ykrd2GENHkJ5kEaPEOummHQ7ucnm/6E8Kz0MwgzyaVfUu993uKpoIkJZyYkwr8GPbSYm2jHIYZduJgZjQPulBy6EkAkwnnaw6wodO6eJIaXekxRP1tyMlwpihCAvYgSD2voBD4WxjNH9H2+iskzIZJxYknU6OEo6twuOP4i7TQC0fOiBUM7ccpvdEE2pdHNn2xJiWasZ1JcHkA/SZKF1qFYdqUOpCVDRgR1mXTvA/i3mol4vBcbF8fZKvnM9yyqB9dICOUIBOUQVdoSqqIYp66Bm9oFfvyXvz3r2P6dMFb+bZQ3/K+/wBLc+XLQ==</latexit>

Bitwise KNN search

�<latexit sha1_base64="q/5VnUna48MdF4pyKG1MbqGQn9I=">AAACBXicZZDLSgMxFIYz3q23qks3wSK4kHZGBF1JQRcuFZwq2CKZzBmNzWVIzohl6NqlW30Id+LW5/AZfAnTy8LLgcB3/uQ/nPxJLoXDMPwMJianpmdm5+YrC4tLyyvV1bWWM4XlEHMjjb1MmAMpNMQoUMJlboGpRMJF0j0a3F/cg3XC6HPs5dBR7EaLTHCGXorbJjV4Xa2F9XBY9D9EY6iRcZ1eV7/aqeGFAo1cMueuojDHTsksCi6hX2kXDnLGu+wGrjxqpsB1yuGyfbrllZRmxvqjkQ7Vn46SKed6KtmhHhTD2x2aKG8boPs9GrODTil0XiBoPpqcFZKioYOv0lRY4Ch7Hhi3wi9H+S2zjKMPpNIeGstG7HzXUELfQVeoxrE1eWIeGilkdQfYr/h0or9Z/IfWbj3yfLZXax6Oc5ojG2STbJOI7JMmOSGnJCacCPJEnslL8Bi8Bm/B++jpRDD2rJNfFXx8A9somBU=</latexit> <latexit sha1_base64="q/5VnUna48MdF4pyKG1MbqGQn9I=">AAACBXicZZDLSgMxFIYz3q23qks3wSK4kHZGBF1JQRcuFZwq2CKZzBmNzWVIzohl6NqlW30Id+LW5/AZfAnTy8LLgcB3/uQ/nPxJLoXDMPwMJianpmdm5+YrC4tLyyvV1bWWM4XlEHMjjb1MmAMpNMQoUMJlboGpRMJF0j0a3F/cg3XC6HPs5dBR7EaLTHCGXorbJjV4Xa2F9XBY9D9EY6iRcZ1eV7/aqeGFAo1cMueuojDHTsksCi6hX2kXDnLGu+wGrjxqpsB1yuGyfbrllZRmxvqjkQ7Vn46SKed6KtmhHhTD2x2aKG8boPs9GrODTil0XiBoPpqcFZKioYOv0lRY4Ch7Hhi3wi9H+S2zjKMPpNIeGstG7HzXUELfQVeoxrE1eWIeGilkdQfYr/h0or9Z/IfWbj3yfLZXax6Oc5ojG2STbJOI7JMmOSGnJCacCPJEnslL8Bi8Bm/B++jpRDD2rJNfFXx8A9somBU=</latexit> <latexit sha1_base64="q/5VnUna48MdF4pyKG1MbqGQn9I=">AAACBXicZZDLSgMxFIYz3q23qks3wSK4kHZGBF1JQRcuFZwq2CKZzBmNzWVIzohl6NqlW30Id+LW5/AZfAnTy8LLgcB3/uQ/nPxJLoXDMPwMJianpmdm5+YrC4tLyyvV1bWWM4XlEHMjjb1MmAMpNMQoUMJlboGpRMJF0j0a3F/cg3XC6HPs5dBR7EaLTHCGXorbJjV4Xa2F9XBY9D9EY6iRcZ1eV7/aqeGFAo1cMueuojDHTsksCi6hX2kXDnLGu+wGrjxqpsB1yuGyfbrllZRmxvqjkQ7Vn46SKed6KtmhHhTD2x2aKG8boPs9GrODTil0XiBoPpqcFZKioYOv0lRY4Ch7Hhi3wi9H+S2zjKMPpNIeGstG7HzXUELfQVeoxrE1eWIeGilkdQfYr/h0or9Z/IfWbj3yfLZXax6Oc5ojG2STbJOI7JMmOSGnJCacCPJEnslL8Bi8Bm/B++jpRDD2rJNfFXx8A9somBU=</latexit>

ŷ
<latexit sha1_base64="xbu7HCixjOacgkT+qO85UyOc5z0=">AAACCXicZZDLSgMxFIYzXmu9VV26CRbBhbQzKuhS1IXLCtYLTpFMesbG5jIkZ8Qy9AlcutWHcCdufQqfwZcwrV14ORD4zp/8h5M/yaRwGIYfwdj4xOTUdGmmPDs3v7BYWVo+cya3HJrcSGMvEuZACg1NFCjhIrPAVCLhPOkeDu7P78A6YfQp9jJoKXajRSo4Qy9dxh2GRZz0+teValgLh0X/QzSCKhlV47ryGbcNzxVo5JI5dxWFGbYKZlFwCf1ynDvIGO+yG7jyqJkC1yqGC/fpulfaNDXWH410qP50FEw511PJJvWgGHY2aaK8bYDu92hM91qF0FmOoPn35DSXFA0dfJe2hQWOsueBcSv8cpR3mGUcfSjleGgs6k3nu7oS+ha6QtWPrMkSc19vQ1pzgP2yTyf6m8V/ONuqRdu1rZOd6v7BKKcSWSVrZINEZJfsk2PSIE3CiSKP5Ik8Bw/BS/AavH0/HQtGnhXyq4L3Lz8tmfs=</latexit>

Masking

Index
to the
neighbors

<latexit sha1_base64="VTlWha71hBJPTYJjyY9w2UGED5U=">AAAB8XicbVBNSwMxEJ34WetX1aOXYBE8SNkVUY9FLz1WsB/QLiWbZtvYJLskWaEs/Q9e60m8+n8E/41puwdtfTDweG+GmXlhIrixnveN1tY3Nre2CzvF3b39g8PS0XHTxKmmrEFjEet2SAwTXLGG5VawdqIZkaFgrXD0MPNbL0wbHqsnO05YIMlA8YhTYp3U7IYyq016pbJX8ebAq8TPSRly1Hulr24/pqlkylJBjOn4XmKDjGjLqWCTYjc1LCF0RAas46gikpkgm187wedO6eMo1q6UxXP190RGpDFjGbpOSezQLHsz8RKH8j+/k9roLsi4SlLLFF0si1KBbYxn7+M+14xaMXaEUM3dvZgOiSbUupCKLgh/+e1V0ryq+DcV//G6XL3PIynAKZzBBfhwC1WoQR0aQOEZXmEKb8igKXpHH4vWNZTPnMAfoM8fBvOQWg==</latexit>

H

<latexit sha1_base64="FkHZAIzftknl+UfyWKfbzdEzBVE=">AAAB+XicbVBNS8NAEN34WetX1aOXxSJ4kJKIqMeiF48V7Ac0sWw203bp7ibsbsQS8j+81pN49b8I/hu3bQ7a+mDg8d4MM/PChDNtXPfbWVldW9/YLG2Vt3d29/YrB4ctHaeKQpPGPFadkGjgTELTMMOhkyggIuTQDkd3U7/9DEqzWD6acQKBIAPJ+owSY6Un3zAeQeaHInvJ816l6tbcGfAy8QpSRQUavcqXH8U0FSAN5UTrrucmJsiIMoxyyMt+qiEhdEQG0LVUEgE6yGZX5/jUKhHux8qWNHim/p7IiNB6LELbKYgZ6kVvKp7jUPznd1PTvwkyJpPUgKTzZf2UYxPjaQw4Ygqo4WNLCFXM3ovpkChCjQ2rbIPwFt9eJq2LmndV8x4uq/XbIpISOkYn6Ax56BrV0T1qoCaiSKFXNEFvTuZMnHfnY9664hQzR+gPnM8fzHCUQA==</latexit>

x̃

<latexit sha1_base64="3gjvS1anaBaoppZ/wfrGluHC05c=">AAACAXicZZBNSwMxEIaz9auuX6sevQSL4qGU3SLqsehF8FLBfkC7lGw2bUOT3SWZFcrSk1f/iDfptR79E/4b020P1r4Q5smbmSEzQSK4Btf9sQobm1vbO8Vde2//4PDIOT5p6jhVlDVoLGLVDohmgkesARwEayeKERkI1gpGD/P31itTmsfRC4wT5ksyiHifUwLG6jmXnS6QtOeVcR6rJtIwBr24Zt1AZk+Tid9zSm7FzYXXwVtCCS1V7znf3TCmqWQRUEG07nhuAn5GFHAq2MTuppolhI7IgHUMRkQy7Wf5PBN8YZwQ92NlTgQ4d/9WZERqPZZBGRuQBIZlHEhTNke92hr6d37GoyQFFtFF534qMMR4vg0ccsUoiLEBQhU3n8N0SBShYHZm22Zs7/+Q69CsVrybivd8XardLxdQRGfoHF0hD92iGnpEddRAFL2jKZqhL+vN+rA+rekitWAta07RiqzZL+4FlTI=</latexit>

[⌧1, ⌧2, · · · ⌧K]

<latexit sha1_base64="zh+gd1yEpuIupiKUYNU+A9zWgNo=">AAACBnicbVBNS8NAEN3Ur1q/qp7Ey2IRPJSSiKh4KnrpsYJthSaEzWbbLt1Nwu5EKCF49Y94rSfx6q8Q/DduPw7a+mDg8d4MM/OCRHANtv1tFVZW19Y3ipulre2d3b3y/kFbx6mirEVjEavHgGgmeMRawEGwx0QxIgPBOsHwbuJ3npjSPI4eYJQwT5J+xHucEjCSXz5ygYuQZW4gs0ae+9lN1QWS+k7ulyt2zZ4CLxNnTipojqZf/nLDmKaSRUAF0brr2Al4GVHAqWB5yU01Swgdkj7rGhoRybSXTV/I8alRQtyLlakI8FT9PZERqfVIBqZTEhjoRW8iVnEg//O7KfSuvYxHSQosorNlvVRgiPEkExxyxSiIkSGEKm7uxXRAFKFgkiuZIJzFt5dJ+7zmXNac+4tK/XYeSREdoxN0hhx0heqogZqohSh6Rq9ojN6sF2tsvVsfs9aCNZ85RH9gff4A81GYog==</latexit>

H̃:,⌧1

<latexit sha1_base64="pbga8IS4PedpG77OxzCBxPLjUaU=">AAACBnicbVDLSsNAFJ3UV62vqCtxM1gEF6UkRVRcFd10WcE+oClhMp22Q2eSMHMjlBDc+iNu60rc+hWCf+P0sdDWAxcO59zLvfcEseAaHOfbyq2tb2xu5bcLO7t7+wf24VFTR4mirEEjEal2QDQTPGQN4CBYO1aMyECwVjC6n/qtJ6Y0j8JHGMesK8kg5H1OCRjJt0884KLHUi+QaS3L/PS25AFJ/Erm20Wn7MyAV4m7IEW0QN23v7xeRBPJQqCCaN1xnRi6KVHAqWBZwUs0iwkdkQHrGBoSyXQ3nb2Q4XOj9HA/UqZCwDP190RKpNZjGZhOSWCol72pWMKB/M/vJNC/6aY8jBNgIZ0v6ycCQ4SnmeAeV4yCGBtCqOLmXkyHRBEKJrmCCcJdfnuVNCtl96rsPlwWq3eLSPLoFJ2hC+Sia1RFNVRHDUTRM3pFE/RmvVgT6936mLfmrMXMMfoD6/MH9NqYow==</latexit>

H̃:,⌧2

<latexit sha1_base64="KRGh49K4P714SFtWkS2p7UBbpqg=">AAACDXicbZDLSsNAFIYnXmu9RV26GSyCi1ISERVXRTcFNxXsBZpQJtNpO3QmCTMnQgnZuvVF3NaVuPUNBN/GadqFtv4w8POdczhz/iAWXIPjfFsrq2vrG5uFreL2zu7evn1w2NRRoihr0EhEqh0QzQQPWQM4CNaOFSMyEKwVjO6m9dYTU5pH4SOMY+ZLMgh5n1MCBnVt7AEXPZZ6gUxrWdZNb8oekKSbg/vMELvkVJxceNm4c1NCc9W79pfXi2giWQhUEK07rhODnxIFnAqWFb1Es5jQERmwjrEhkUz7aX5Jhk8N6eF+pMwLAef090RKpNZjGZhOSWCoF2tTWMaB/K/eSaB/7ac8jBNgIZ0t6ycCQ4Sn0eAeV4yCGBtDqOLmv5gOiSIUTIBFE4S7ePayaZ5X3MuK+3BRqt7OIymgY3SCzpCLrlAV1VAdNRBFz+gVTdCb9WJNrHfrY9a6Ys1njtAfWZ8/MAOcHQ==</latexit>

H̃:,⌧K

<latexit sha1_base64="9x3MEHQPtkQL13YP4FENeKnr1Us=">AAACB3icbZDLSsNAFIYn9VbrLepON4NFcFFKIqLiquhGcFPBXqQJYTKdtENnkjAzEUoIuPVF3NaVuPUlBN/GaZqFtv4w8POdczhzfj9mVCrL+jZKS8srq2vl9crG5tb2jrm715ZRIjBp4YhFousjSRgNSUtRxUg3FgRxn5GOP7qZ1jtPREgahQ9qHBOXo0FIA4qR0sgzD1LH5+ljlnnpVc1RKPFycJdpYlatupULLhq7MFVQqOmZX04/wgknocIMSdmzrVi5KRKKYkayipNIEiM8QgPS0zZEnEg3zW/I4LEmfRhEQr9QwZz+nkgRl3LMfd3JkRrK+doU1qDP/6v3EhVcuikN40SREM+WBQmDKoLTUGCfCoIVG2uDsKD6vxAPkUBY6egqOgh7/uxF0z6t2+d1+/6s2rguIimDQ3AEToANLkAD3IImaAEMnsErmIA348WYGO/Gx6y1ZBQz++CPjM8fbfGZhA==</latexit>

Y:,⌧K

<latexit sha1_base64="mUqy9M1C4pvB5QZqSbzOLfZc2Rk=">AAACBHicbVDLSgMxFM3UV62vURcu3ASL4KKUGREVV0U3LivYh3SGIZNm2tBkZkgyQgmz9Ufc1pW49TME/8a0nYW2Hrhwcs695N4TpoxK5TjfVmlldW19o7xZ2dre2d2z9w/aMskEJi2csER0QyQJozFpKaoY6aaCIB4y0glHd1O/80yEpEn8qMYp8TkaxDSiGCkjBfaR9kKun/I80Dc1T6Es0NrNzdOuOnVnBrhM3IJUQYFmYH95/QRnnMQKMyRlz3VS5WskFMWM5BUvkyRFeIQGpGdojDiRvp4dkMNTo/RhlAhTsYIz9feERlzKMQ9NJ0dqKBe9qViDIf/P72UquvY1jdNMkRjPP4syBlUCp4nAPhUEKzY2BGFBzb4QD5FAWJncKiYId/HsZdI+r7uXdffhotq4LSIpg2NwAs6AC65AA9yDJmgBDHLwCibgzXqxJta79TFvLVnFzCH4A+vzB++imCE=</latexit>

Y:,⌧1

<latexit sha1_base64="+1Q7eT2yaAVHNXAaPu13P1bRA6E=">AAACBHicbVDLSgMxFM3UV62vURcu3ASL4KKUmSIqropuXFawrdIZhkyaaUOTmSHJCCXM1h9xW1fi1s8Q/BvTdhbaeuDCyTn3kntPmDIqleN8W6WV1bX1jfJmZWt7Z3fP3j/oyCQTmLRxwhLxGCJJGI1JW1HFyGMqCOIhI91wdDv1u89ESJrED2qcEp+jQUwjipEyUmAfaS/k+inPA31d8xTKAq0buXnaVafuzACXiVuQKijQCuwvr5/gjJNYYYak7LlOqnyNhKKYkbziZZKkCI/QgPQMjREn0tezA3J4apQ+jBJhKlZwpv6e0IhLOeah6eRIDeWiNxVrMOT/+b1MRVe+pnGaKRLj+WdRxqBK4DQR2KeCYMXGhiAsqNkX4iESCCuTW8UE4S6evUw6jbp7UXfvz6vNmyKSMjgGJ+AMuOASNMEdaIE2wCAHr2AC3qwXa2K9Wx/z1pJVzByCP7A+fwDxLZgi</latexit>

Y:,⌧2

Fig. 1: The KNN-based source separation process using hash
codes.

them. For this second baseline, we follow the basic LSH setup
that applies random projections to the data points followed by
a step function (i.e., the sign function) as the hash function.

We define L random projection vectors as P ∈ RL×D that
are randomly initialized and fixed throughout the experiment.
The l-th projection using Pl,: defines the l-th bit in the codes:

H̃l,: = sgn(Pl,:H + bl) (2)

where bl is a bias term. Applying the same P onto H and x,
we obtain T training spectra’s hash codes each of which is a
bipolar binary bit string, i.e, H̃ ∈ {−1,+1}L×T , and one for
the test spectrum, x̃ ∈ {−1,+1}L, respectively. Accordingly,
Hamming similarity also replaces the similarity function by
counting the number of matching bits in the pair of binary
feature vectors:

SHam(ã, b̃) =
∑
l

I(ãl, b̃l)/L, (3)

where I(ãl, b̃l) = 1 iff ãl = b̃l, otherwise I(ãl, b̃l) = 0.
Or, we can simplify this expression into an inner product by
assuming bipolar binaries as follows:

SHam(ã, b̃) = ã>b̃/L, if ã, b̃ ∈ {−1,+1}L (4)

Hence, what we expect from the hash codes is that the
Hamming similarity of an originally similar pair should be
more likely to be high than that of a dissimilar pair. Suppose
there is a similar pair in the original feature space, e.g.,
Scos(x,H:,i) > ρ, where ρ stands for a threshold. Then, a dis-
similar pair can be also defined similarly: Scos(x,H:,j) ≤ ρ.
Their corresponding LSH codes are discriminative, if they
fulfill the following inequality:

p
(
SHam(x̃, H̃:,i) = 1

)
> p
(
SHam(x̃, H̃:,j) = 1

)
. (5)

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2662

In other words, a successful LSH hashing step guarantees a
higher chance of the originally similar pair colliding each other
in the same bucket than a dissimilar pair.

Fig. 1 overviews the separation process of Baseline 2. First,
the system prepares the hash codes of all mixture spectra
dictionary H̃ . Then, it applies the same hashing process
(i.e., the same projection matrix P) to the test-time mixture
spectrum to acquire its hash code x̃. The KNN search follows
to find the similar training spectra, but the search is performed
in the hash code space H̃ instead of the original feature space
H . Using the found KNN entries N = {τ1, τ2, · · · , τK},
the system infers the masking vector. Note that it is similar
to Baseline 1 described in 1, except that the search is done
based on the simpler-to-compute Hamming similarity.

The downside of the KNN search task performed in a
binary feature space H̃ is that it may result in a suboptimal
search compared to H . However, the upside is that the binary
comparison can be fast and efficient since it can be performed
using efficient bitwise operations (e.g., bitwise AND and pop
counting) with supporting hardware. Furthermore, if the size
of the hash table L is much smaller than the original input
features, more items can be loaded into memory, resulting in
disk I/O cost reduction.

Since the KNN search will be on the hash codes, the search
performance depends on the quality of the hash function as
to how well it preserves the original similarity after hashing.
However, when it comes to the LSH method, the lackluster
quality of the codes originates from the data-blind nature of
random projections [29], [30]. Instead of attempting to learn
the best projection vectors from data, the representativeness
of the hash codes relies greatly on the randomness in the
projection vectors: during the initial construction, each hash
function, i.e., the projection, is chosen independently and
uniformly at random. Hence, a large L is required to form
discriminative hash codes that can guarantee high precision.
This is detrimental in terms of query time, computational cost
of projecting the query to hash codes, and storage overhead
from the large number of projections, even though they result
in binary codes.

III. BOOSTED LSH TRAINING ALGORITHM

The proposed BLSH algorithm addresses the inefficiency
of the LSH algorithm by learning each projection vector.
With the boosting concept, we learn the projections in an
incremental fashion, i.e., one by one in the order of their
significance. In this way, each projection improves the total
representativeness of the code by trying to fix the preceding
projections’ mistakes in approximating the original similarity
function. As a result, we can expect a hash code whose bits are
ordered based on their contribution to the search performance,
adding scalability to the entire system. For example, if a too
large L is not affordable, instead of re-initializing the entire
projection table P , one can trim the end of the existing table.
To summarize, the goals of the BLSH training algorithm are
as follows:
• Compactness: By using the boosting concept, we aim at

achieving higher representation power using shorter bit
strings in comparison with ordinary LSH codes.

• Scalability: Out of the total L bits, the system can choose
to utilize only the first few bits because the bits are
ordered based on their significance. Hence, the system
can adapt to different computational environments with
greater scalability.

• Efficiency: The inference on the proposed hashing pro-
cess should still be affordable (i.e., a single-layer neural
network) for efficient test-time hashing.

In this section, we present our learnable LSH algorithm for
source separation. We extend LSH-based KNN search with
approximating SSMs, boosting, and kernel functions.

A. Binary Approximations of Similarity Matrices

Rather than employing a large number of independent
random projections, we aim to learn similarity-preserving hash
functions that better fit the data distribution. Our goal of
learning to hash is to preserve the features’ discriminative
properties as shown in the literature [29], [30], [48], [49].
Among them, deep learning models [29], [49] have been pro-
posed to learn data-dependent hash codes as well; nonetheless,
the computational complexity of multilayered neural networks
is restrictive in hashing applications that operate under a
limited resource budget.

The proposed BLSH algorithm is still based on the pro-
jection and sign function as in the LSH algorithm. However,
instead of relying on random projections, we see each pro-
jection as a weak classifier and learn its model parameters,
i.e., the projection vector, during training. Here, we will use
the same formulation defined in eq. (2), while the projection
vector Pl,: and bias bl are trainable parameters. Note that
the non-differentiable sign function results in an intractable
Dirac delta function during the gradient descent computation.
We circumvent this issue by employing the derivative of
the hyperbolic tangent function as a surrogate of the delta
function:

sgn′(x) ≈ tanh′(x) = 1− tanh2(x). (6)

During training the projection vectors are directed to mini-
mize the discrepancies between the pairwise affinity relation-
ships among the original features in H and those we construct
from their corresponding hash codes H̃ . We express the loss
function in terms of the dissimilarity between the target self-
similarity matrices (SSM) and its binary estimation. We denote
S ∈ RT×T for the target SSM,

Si,j = Scos(H:,i,H:,j) (7)

where i, j ≤ T . Suppose that the optimization process is
learning the l-th projection Pl,:, which result in H̃l,: bipolar
binary hash codes. We construct the binary SSM S̃ as

S̃i,j =
H̃l,i · H̃l,j + 1

2
(8)

where we shift and scale such that S̃ ∈ {0, 1}T×T . Then, our
objective is to minimize the dissimilarities:∑

i,j

D
(
S̃i,j‖Si,j

)
(9)

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2663

Algorithm 2 BLSH training

1: Input: S ∈ RT×T B Target SSM
2: Output: P ∈ RL×D B Set of projections
3: W ∈ RT×T ← uniform vector of 1

T×T
4: P ∈ RL×D ← random numbers
5: β ∈ RL ← 0
6: for l← 1 to L do
7: Pl,: ← arg min

Pl,:

∑
i,j D

(
S̃i,j‖Si,j

)
�W (l)

i,j

8: εl =
∑
i,j D

(
S̃i,j‖Si,j

)
�W (l)

i,j

9: βl ← ln((1− εl)/εl)
10: W

(l+1)
i,j = W

(l)
i,j exp

(
βl
∑
i,j D

(
S̃i,j‖Si,j

))
11: end for
12: return P

The objective also depends on the choice of the distance metric
D, which is cross-entropy in our case. With this objective
the learned binary hash codes can be more compact and
representative than the ones obtained from random projections
as in eq. (2). There can be potentially many different solutions
to this optimization problem, such as solving this optimization
directly for the set of projection vectors P or spectral hashing
that learns the hash codes directly with no assumed projection
process [30]. We present our proposed method in the following
subsection.

B. Boosted LSH

A major drawback of LSH is the independence between
the random hyperplanes. Hence, LSH tends to result in redun-
dancy in number of projections, i.e., a large L value, to build
discriminative hash codes. As we saw in Sec. III-A, we resolve
this issue by turning LSH into a learnable hashing process,
which minimizes the gap between SSM and BSSM (eq. (9)).
In this way, the hash codes behave similarly to the already-
known discriminative features H . A remaining issue though is
that the BSSM approximation has to pre-define the number of
projections L, within which there is no straightforward order
of significance. Moreover, if L is set to be too large, some
projections do not contribute to the discrimination, leading to
a cost in test-time inference, while they increase the bit depth
of the code.

We address this issue by proposing a boosted LSH algo-
rithm, where each projection is learned one by one, in the
order of their significance. Hence, one can rely more on the
initially learned projections than the later added ones. This
property is designed to handle the test-time use case, where
the application chooses to use only a small number of most
significant projections, i.e., the first few bits from the code to
save the processing time and resources.

To this end, we reformulate AdaBoost, one of the most
widely studied adaptive boosting strategy which was originally
proposed for classification [36]. It learns efficient weak learn-
ers, e.g., a linear classifier, in an additive manner: each new
weak learner complements those learned in previous rounds
and infers something new about the data. The set of weak
learners constructs an adaptive basis function model, whose

weighted sum makes the strong final prediction. In such a
weighted sum, the complementary nature tends to give larger
weights to the earlier learners than the later added ones.

The AdaBoost framework aligns with our applicational goal,
because we also need such an order of importance between
the projections. Moreover, since each of the hash code bits is a
result of a weak classifier, i.e., linear combination followed by
a sign function, the hashing process is similar to the weighted
sum of weak learners in AdaBoost. The biggest difference
between AdaBoost and BLSH is that BLSH does not use
misclassification as the loss. Instead, it aims to learn weak
learners whose binary decision results can improve the speech
enhancement performance.

Consequently, we propose to adjust the loss function and
the boosting algorithm accordingly. Here, since our speech
enhancement is based on the matching process between test
and training examples, we once again seek the binary feature
space where matching results are similar to the ones in the
original feature space. Hence, our training objective is to
approximate the pairwise relationship between the known
discriminative features H using the binary features H̃ . It
leads to the total error function defined as follows:∑

i,j

D
(L∑
l=1

βlS̃i,j‖ Si,j
)
, (10)

where βl denotes the weight of the l-th weak learner to the
total estimation and the l-th weak learner is defined by the l-th
projection H̃:,i = Pl,:H:,i + bl that constructs the shifted and
scaled BSSM S̃i,j (eq. 8).

In AdaBoost, when each weak learner is trained, it focuses
more on the previously misclassified examples. This mecha-
nism is implemented by a weighting scheme on the samples:
those misclassified training samples receive an exponentially
large weight, so that the next weak learner pays more attention
to them. Likewise, the per-sample weights in AdaBoost are
defined over all training samples.

On the other hand, in BLSH for speech denoising, the
optimization process involves T 2 pairwise relationships even
though it begins with T training examples. It is because our
goal is to preserve the cross-sample correlation rather than a
per-sample property. Hence, we redesign AdaBoost’s sample
weighting scheme by defining a per-pair symmetric weight
matrix W ∈ RT×T . It is initialized uniformly, but then
updated after adding every projection. The weight matrix is
designed to exponentially increase its values when a pair (i, j)
is incorrectly represented by BSSM compared to the target
SSM as follows:

W
(l+1)
i,j = W

(l)
i,j exp

(
βl
∑
i,j

D
(
S̃i,j‖Si,j

))
, (11)

where the superscript (l) denotes the per-pair weight matrix
associated with the l-th weak learner.

As in AdaBoost, the effect of this update rule is to exag-
gerate the importance of BSSM cells that failed to reconstruct
the target SSM. The (l + 1)-th weak learner can then use
these weights to concentrate on hard-to-approximate pairs of
examples. This approach pursues a complementary (l + 1)-th

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2664

(a) (b) (c) (d)

Fig. 2: Self-affinity matrices of varying L hash codes and
original time-frequency bins. (a) L = 10 (b) L = 50 (c)
L = 300 (d) Ground-truth SSM.

projection, thus overall rapidly increasing the approximation
quality in (10) with relatively smaller L projections. The final
boosted objective for the l-th projection is formulated as

εl =
∑
i,j

D
(
S̃i,j‖Si,j

)
�W (l)

i,j . (12)

Under this boosted objective, the first few weak learners result
in binary features that approximate the majority of the original
feature similarity, thereby dramatically reducing the overall
storage of projections, computation from projecting elements,
and the length of hashed bit strings. Given the learned l-
th projection and per-pair weights, we obtain the projection
weights as

βl = ln
1− εl
εl

. (13)

Although the cross-entropy loss D is relatively small, we clip
εl = min(εl, 1) prior to computing eq. 13.

Algorithm 2 summarizes the BLSH procedure introduced
in this section. Fig. 2 shows the complementary nature of the
projections and their convergence behavior. After learning the
projection matrix P , the rest of the test-time source separation
process is the same as described in Sec. II-B.

C. Kernel Functions as Similarity Measure

Deep neural networks can undoubtedly produce highly
discriminative data-dependent hash codes via a series of
nonlinear transformations. For example, in semantic hashing,
autoencoders are trained to learn codes in its bottleneck layer
[29]. However, the deep architecture tends to require heavy
inference computation as opposed to BLSH. Meanwhile, it is
also true that the projection-based LSH process corresponds
only to a shallow neural network limiting its performance.

In this section we employ a nonlinear kernel to produce the
target SSM so that the proposed BLSH algorithm learns from
a potentially very complex pairwise relationship. Based on the
learning objective defined in eq. (9), the relative performance
of the learned hash functions significantly depends on the
definition of ground-truth targets (e.g., distance metric) [30].
Hence, the quality of the feature vectors used to construct
the target SSM is critical. For example, if H stands for the
raw spectrogram of STFT magnitudes, we could derive a more
abstract feature via a nonlinear feature transform function φ(·).
Although the transform function can be a tractable one, such
as a neural network encoder, in this section we assume that it
can be intractable. By using the kernel trick, we implement our

new objective by computing the pairwise similarity through the
kernel function:

G
(
H:,i,H:,j

)
= φ(H:,i)

>φ(H:,j). (14)

For example, the previous formulation eq. (9) can be consid-
ered as the case with an identity mapping function φ = I
that forms a linear kernel. Among various kernels, we adopt
the radial basis function (RBF) to create pairwise similarity
embedded in high dimensional spaces [50]. An RBF kernel is
defined on our normalized input features as follows:

G
(
H:,i,H:,j

)
= C exp

(
H>:,iH:,j

σ2

)
(15)

where C = exp(−1/σ2) and G
(
H:,i,H:,j

)
∈ [0, 1] for nor-

malized features. The hyperparameter σ2 controls the width of
the Gaussian-shaped decision boundary, which determines the
locality of the similarity measure defined in the feature space
[51]. Since RBF kernels can be represented as an implicit sum
over an infinite sequence of polynomials, it nonlinearly defines
an infinitely high-dimensional feature space (Rn → R∞). Note
that with the tractable RBF kernel function in eq. (15) one
can avoid the intractability involved in the infinitely high-
dimensional feature transformation.

Using the kernel trick, we train another version of our
hash functions. This time, the objective is to minimize the
dissimilarity between the predicted BSSM and the RBF kernel
defined between pairwise training feature vectors H . With a
shortened notation for the kernel matrix Gi,j = G

(
H:,i,H:,j

)
the loss function simply replaces the target SSM S of eq. (10)-
(12) with G.

Note that the nonlinearity of the target SSM G can be
adjusted using the hyperparameter σ2: the smaller the value,
the more local the distance in the feature space. Eventually,
if G is strictly defined with local pairs, G introduces more
nonlinearity. Likewise, σ2 allows for flexibility in determining
the target complexity of the system. We will investigate the
impact of different choices of σ2 in the experiment section.

IV. EXPERIMENTAL SETUP

A. Datasets

To investigate the effectiveness of the proposed framework
for speech enhancement, we evaluate our model on the single-
channel speech denoising setup. A training set consisting of
10 hours of noisy utterances and their corresponding clean
speech signals. The clean utterances are from the randomly
selected but gender-balanced 160 speakers from the train fold
of the TIMIT corpus. They are mixed with different non-
stationary noise signals with 0 dB signal-to-noise ratio (SNR),
namely {birds, casino, cicadas, computer keyboard, eating
chips, frogs, jungle, machine guns, motorcycles, ocean} [52].
Since there are 10 short utterances per speaker, it amounts to
1,600 utterances recorded with a 16kHz sampling rate. The
projections are learned on the training set and the output hash
codes are saved as the dictionary.

One hour of evaluation data set was mixed from 110 unseen
speakers in the TIMIT test set and unseen noise sources from
the DEMAND database, which consists of domestic, office,

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2665

indoor public places, transportation, nature, and street (open
mixture set) [53]. The test set mixtures are with -5, 0, 5, and
10 dB SNR and gender-balanced as well.

We further test on the VoiceBank-DEMAND dataset by
Valentini et al. [54] to evaluate our system on mixtures from
unseen speakers and sentences.

We apply a short-time Fourier transform (STFT) with a
Hann window of 1024 samples and a hop size of 256. Option-
ally, mel spectrograms are created using 128 mel scale filters.
During training, the whole mixture speech was segmented into
a minibatch with a length of 1000 frames, such that the self-
similarity matrices and the kernel matrices are of a reasonable
size.

For evaluation, we calculate the signal-to-distortion ratio
(SDR) [55]. We also report results in terms of model size,
scale-invariant SDR (SI-SDR) [56], perceptual evaluation of
speech quality (PESQ) with values ranging from -0.5 to 4.5
[57], and extended short-time intelligibility (ESTOI) [58].

B. Models

In our experiments we use a few different setups to provide
a comprehensive understanding of the proposed model. First,
we differentiate the models based on the type of the input
features x as follows:
• INSTFT: The 513-dimensional magnitude coefficients of

STFT.
• INmel: The 128-dimensional mel spectra.

In addition, we also denote the models based on what they are
targeting:
• SSM: This is the case of using the regular SSM but its

behavior varies depending on the input representation,
i.e., STFT or mel.

• RBFσ2 : The case when RBF kernels are used as target.
To compute RBF kernels, we only use STFT as input to
discern the effects of nonlinearity introduced by the RBF
kernel. The RBF kernels vary depending on the choice
of σ2.

We differentiate our hashing-based models based on two
important hyperparameters. First, the number of projections
L defines the bit depth of the binary hash codes. Our goal
is to achieve a better performance using the proposed BLSH
algorithm than the random projection-based LSH method if
L is the same. Second, the size of the training dictionary
matters. Although in theory we can use the entire training
examples and convert them into the hash codes, using these
T examples can increase the complexity of the KNN search.
Instead, we investigate a subsampling option, where we use
only a proportion of T training examples, i.e., ρ = 0.01 or 0.1.
Consequently, we also denote the two hashing mechanisms
distinctively:
• LSHL,ρ: The ordinary LSH-based method defined with L

projections and ρT training examples.
• BLSHL,ρ: Ditto, except that the hash codes are learned

via the proposed BLSH algorithm.
• KNNρ: This one is a KNN-based system, but using raw

input features, STFT or mel, instead of the hash codes.
Hence, it is not elaborated with the choice of L.

In all three KNN methods, we fixed the neighborhood size to
K = 10.

For example, INSTFT-RBFσ2=0.1-BLSHL=300,ρ=0.1 de-
notes a KNN-based model that uses hash codes learned from
the proposed BLSH method. It uses only 10% of the training
data for the KNN search and the bit depth is 300. When
BLSH algorithm learns the projection it targets a RBF kernel
with σ2 = 0.1. The algorithm operates on the magnitudes of
STFT spectra. Or, INmel-KNNρ=0.01 is a model that performs
KNN search directly on the mel spectra. For cases applying
to all L or both ρ values, we remove the subscripts from BLSH
for brevity.

Finally, three neural network models are trained for com-
parison.
• FC: We train fully-connected (FC) network with two or

three hidden layers. The number of hidden units ranges
from 32 to 1, 024.

• BiLSTM: A recurrent neural network using bidirectional
long short-term memory (BiLSTM) [59] cells are em-
ployed. We use two BiLSTM layers by varying the
number of memory cells and hidden units from 32 to
1, 024.

Both models are trained with STFT magnitude spectrogram
inputs and IBM targets. The logistic activation function was
applied on the outputs of both models. For the FC network,
batch normalization [60] and ReLU activation functions [61]
were applied to the intermediate outputs. The learning rate
was set as 1× 10−4 for both FC and BiLSTM models. Adam
optimizer was used for both models [62].

In addition, we also present another end-to-end model archi-
tecture that performs speech enhancement in the time domain
as a reference. Conv-TasNet is a fully convolutional model that
performs the masking operation in the latent space, achieving
state-of-the-art performance in speech separation benchmarks
[8]. While there have been a few other models that followed
up showing meaningful improvement on speech separation
[9], [10], [63], [64], we adopted the Conv-TasNet model as a
stable reference. To train Conv-TasNet, we employed a much
larger dataset consisting of Librispeech’s training fold [65]
and the MUSAN dataset’s Free Sound corpus [66] by mixing
them with a range of mixing ratio from -5 to 10 dB. Note
that this training set is deliberately chosen to maximize the
performance of the Conv-TasNet architecture, while the other
models mentioned so far have been trained on a much smaller
dataset.

V. EVALUATION RESULTS AND DISCUSSION

In this section, we compare the effects of different KNN
systems, relative subset size ρ, bit depth L, and the type of
input features and training targets. Experimental results are
reported using the evaluation data set (open mixture set).

A. Analysis of the denoising systems on STFT features

From Fig. 3a, we can observe that the proposed BLSH
system clearly outperforms the LSH version in terms of
average SDR improvements for both mel and STFT input

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2666

(a) INSTFT systems at ρ = 0.1 (b) INmel systems at ρ = 0.1 (c) INSTFT systems at ρ = 0.01 (d) INmel systems at ρ = 0.01

Fig. 3: Average and standard deviations (shades) of ∆SDR for various KNN systems with respect to the number of projections
L under different input features and ρ values. The KNN baseline is expressed as a solid horizontal line since it is not dependent
on L. BLSH systems were trained on SSM targets.

features and different choices of ρ and L. With a suffi-
ciently large L, INSTFT-SSM-BLSHL≈100,ρ=0.1 can reach the
INSTFT-KNNρ=0.1’s performance. For all L values, the perfor-
mance of INSTFT-SSM-BLSHρ=0.1 is consistently higher than
the random LSH version, INSTFT-LSHρ=0.1. This demon-
strates that the boosting mechanism provide more discrimi-
native features compared to its counterpart using random hash
codes.

It is also promising that the BLSH hash codes surpass the
performance of the raw Fourier coefficients, while LSH hash
codes fall short. It should be noted that the INSTFT-KNNρ=0.1

baseline conducts the KNN search on high-dimensional
floating-point spectrum coefficients (i.e., D = F = 513),
whereas the BLSH systems are based on the bitwise Hamming
distance between L-bit hash codes.

B. Analysis of the denoising systems on mel features

We can observe from Fig. 3b that INmel-LSH achieves
better performance compared to INSTFT-LSH, demonstrating
the effectiveness of mel features to construct discriminative
hash codes even when a limited bit depth L is allowed (i.e.,
less than L = 150). The mel features’ improved performance
is expected because mel scaling performs a nonlinear feature
transform, a logarithmic scaling process that aligns better to
human auditory perception. This nonlinear feature transform
adds additional representativeness to the LSH methods that
rely solely on randomly initialized projections.

However, the mel transformation is a lossy dimension
reduction method that condenses multiple subbands into one.
Although perceptually motivated, mel scaling eliminates vi-
tal information. This fact is reflected in Fig. 3b. Our pro-
posed boosting-based framework, INmel-SSM-BLSHρ=0.1,
performs best when using only up to a handful of hash
codes (e.g., L = 50). The scores saturate after L = 50
with no further improvements and rather exhibit overfitting
behavior. Hence, we believe that the proposed BLSH algorithm
learns the majority of features using approximately the first
L = 50 weak learners. This result contrasts with the BLSH

results on STFT features in Fig. 3a, where more hyperplanes
learned via the BLSH algorithm keep improving the denoising
performance.

Hence, the experimental results suggest that the BLSH
method on the raw STFT features is more useful than the
LSH counterparts: given the same bit depth, BLSH hash
codes provide better discrimination, and consequently, better
separation. Mel features give boosts to the LSH models, but
BLSH on STFT still outperforms it significantly.

C. The impact of subsampling the training set

In Fig. 3c and 3d, we observe a global performance drop of
all three KNN systems. First, the baseline INSTFT-kNNρ=0.01

exhibits more than 1 dB loss by reducing the training set
from 10% to 1% of the original size. While the BLSH
systems also show decreased performance, they are more
robust to the subsampling process. Random projections of
LSH show a noticeable sensitivity to the randomness in the
subsampling procedure: the standard deviation is significantly
larger especially in the ρ = 0.01 case, whereas that of
BLSH remains tighter. Also, now the BLSH systems start to
exceed the baseline when L = 50. Note that when L = 50,
INmel-SSM-BLSHL=50,ρ=0.01 shows slightly better perfor-
mance than INSTFT-SSM-BLSHL=50,ρ=0.01, showcasing mel
spectrum’s usefulness in this extreme condition. Overall, a
similar trend to the ρ = 0.1 cases is retained: we still prefer
the BLSH model trained from STFT features the best.

D. The impact of using RBF kernels as the training targets

In addition to the SSMs computed by the mel or STFT
features, we also evaluate the validity of nonlinear kernels
as a learning target of our BLSH algorithm. Considering the
nonlinearity introduced during mel scaling, we construct RBF
kernels from the raw STFT features to adequately measure the
impact of the level of nonlinearity controlled by the kernel
width parameter, σ2.

Fig. 4a compares the SSM-based BLSH results
INSTFT-SSM-BLSHρ=0.1 with three BLSH systems targeting

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2667

(a) ρ = 0.1 (b) ρ = 0.01

Fig. 4: Average and standard deviations of ∆SDR for BLSH
systems trained on SSM and RBF targets under varying σ2

and ρ values. Only the STFT feature was used for each of the
systems.

RBF kernels with different kernel widths, σ2 = 0.1,
0.5, and 0.9. We observe that RBF-based systems exhibit
saturation in performance and are unable to catch up to
INSTFT-SSM-BLSHρ=0.1. Specifically, wider kernel widths,
σ2 = 0.9 and 0.5, provide reasonable performance. However,
they still fall short compared to INSTFT-SSM-BLSHρ=0.1,
indicating that the RBF kernels used here are either too
linear to introduce additional distinction between codes
or the nonlinear relation is far from perceptual similarity
between audio spectra. Furthermore, the most extreme case,
INSTFT-RBFσ2=0.1-BLSH, rarely shows improvement even
during the earlier phases of training. This is due to the narrow
width of the kernel which only emphasizes elements that are
relatively close and harshly devalues the scores of distant
frames to near-zero values. Smaller σ2 allows us to focus
on local features, thus being more nonlinear. However, it
removes too much information and restricts the perceptrons
from learning any more features. Similar trends are observed
when the subsampling rate is reduced to ρ = 0.01 in Fig.
4b, with even less relevant results from the mid-sized kernel
(σ2 = 0.5).

Fig. 5 gives a more detailed view to the varying relationship
between BSSM and SSM depending on how the target SSM
is constructed. From BSSM reconstructions, first we can see
that the linear kernel computed from STFT coefficients is easy
for the BLSH algorithm to reconstruct (Fig. 5a vs. 5e), which
is also the best denoising solution we have achieved so far.
Meanwhile, the mel SSM target shown in Fig. 5b exhibits
more contrast than Fig. 5a, indicating more locality introduced
in the similarity between mel spectra. BSSM mimics this
relationship in Fig. 5f, while it fails to catch up with the
drastically dissimilar pairs: dark pixels in Fig. 5b are not well
represented in the BSSM reconstruction.

The RBF kernels also introduce similar locality to the target
SSMs. While with σ2 = 0.5 the RBF kernel behaves as an
SSM with a certain level of nonlinearity (Fig. 5c), the most
narrow kernel width σ2 = 0.1 suppresses most of the non-local
pairwise similarities. As a result, INSTFT-RBFσ2=0.1-BLSH

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Self-affinity matrices and their estimations from binary
codes for varying transformations. The binary outputs shown
are constructed as the weighted sum of BSSMs created from
all L = 300 projections. (a) STFT SSM (b) Mel SSM (c)
RBF σ2 = 0.5 SSM (d) RBF σ2 = 0.1 SSM (e) STFT BSSM
(f) Mel BSSM (g) RBF σ2 = 0.5 BSSM (h) RBF σ2 = 0.1
BSSM.

Fig. 6: Weak learner weights (β) for BLSH systems trained
on varying features and kernels

(Fig. 5h) is distinctly different from its target (Fig. 5d),
demonstrating the difficulty for binary codes to approximate
the sparsity in the target SSM. This is reflected by the respec-
tive denoising performances (e.g., INSTFT-RBFσ2=0.1-BLSH
shows relatively low improvements for increasing L). We
believe that it is because the RBF kernels do not properly
represent the perceptual relationship between audio spectra.

E. The learning behavior of the BLSH algorithm

In our BLSH algorithm, similarly to the ordinary boosting
method, the β values represent relative importance of each
weak learner (i.e., the projection) in the final ensemble. It is
common to see them diminish as more weak learners are added
because the initial weak learners are more important than the
later learned ones.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2668

Fig. 6 indeed shows the decreasing β values in various
BLSH learning processes. First, we note here that the β
values learned from the mel spectra INmel-SSM-BLSHρ=0.1

decays very fast in the initial few rounds and then stagnates,
while the STFT graph from INSTFT-SSM-BLSHρ=0.1 shows
more steady decrease. Hence, this comparison explains the
saturating or overfitting behavior of the BLSH algorithm on
the mel spectrum input shown in Fig. 3b and 3d.

From Fig. 6, it is also noticeable that targeting too localized
RBF kernels is detrimental. When σ2 = 0.1, for example, the
β values quickly drop and become insignificant. SSMs created
using RBF kernels with small kernel width σ2 are mostly
comprised of near-zero values (e.g., Fig. 5 (d)), and most of
the information can be learned using only a few weak learners.
For these SSM targets, adding on more weak learners do not
contribute to the final boosted solution, which is depicted by
β → 0 values for increasing L. The diminishing β values show
that the newly added weak learners no longer learn significant
information and the hyperplanes are not discriminative.

F. Comparison among KNN systems

Table I shows the model size and performance of all
three KNN systems: KNN, LSH, and BLSH. We narrow our
discussion to BLSH systems trained on linear SSM targets.
Model sizes are computed as the total memory occupied by
the training dictionary and hash functions. The KNN baselines
show the enormous memory occupied by the dictionary. For
example, at ρ = 0.1 subsampling rate, INSTFT-KNNρ=0.1

requires ∼0.5GB. INmel-KNNρ=0.1 requires less since the
number of subbands for mel spectra is lower than STFT’s.
LSH methods show significant reduction in dictionary size

with minimal storage overhead from the random projections,
although at the cost of drop in performance. Across various
subsampling rates ρ, LSH methods show a distinct drop in per-
formance, especially in terms of SDR and SI-SDR, compared
to its KNN counterparts using the same input features.

Our proposed BLSH method consistently outperforms the
LSH approaches and also KNN on the STFT magnitude fea-
tures. INSTFT-SSM-BLSHL=300,ρ=0.1 achieves better scores
than INSTFT-KNNρ=0.1 across all metrics. As discussed previ-
ously in Sec. V-A, this demonstrates the better representative-
ness of the learned hash codes than the raw Fourier coefficients
or the basic LSH codes. Furthermore, our BLSH methods using
mel spectra features can save more memory than LSH by
requiring smaller L. INmel-SSM-BLSHL=50 achieves higher
scores with fewer hash functions than INmel-LSHL=300 for
both ρ = 0.1 and 0.01 cases.

Next, we evaluate the computational complexity of the
aforementioned KNN systems and highlight the efficiency
of BLSH models. First, the baseline KNN search procedure
requires a linear scan of all real valued feature vectors in
H , giving O(QDT), where Q stands for the floating-point
precision (e.g., Q = 64 for double-precision). This procedure
is restrictive since T needs to be large for quality source
separation and the distance computation (i.e. floating-point
inner product) is costly, which is the reason for pursuing an
expedited approach to using hash codes.

Since the LSH baseline also uses Algorithm 1, the depen-
dency to T remains the same. However, we can reduce the
complexity from O(QDT) to O(LT) if L < QD. The proce-
dure can be significantly accelerated with supporting hardware
as the Hamming similarity calculation is done through bitwise
operations. Also, the size of the hash table is designed to be
much smaller than the original input features (L < QD) and
hence can be loaded into memory, resulting the disk I/O cost
reduction.

Our proposed BLSH framework does not change the run-
time complexity O(LT) of baseline 2. Nevertheless, BLSH
can outperform LSH with smaller L thanks to the boosting
mechanism (e.g., INmel-SSM-BLSHL=50,ρ=0.1 scores higher
than any LSH systems using L = 300). In conclusion,
BLSH models can achieve higher accuracy and more efficient
memory usage than both baseline systems, computationally
heavy KNN and data-blind LSH approaches.

G. Comparison against deep neural networks (DNN)

Although our goal in this work is not to compete with the
state-of-the-art DNN’s performance, as our solution is more
about maximizing the utility of the binary models, here we
present some denoising results from various DNN models to
provide a reference point.

In Table I, we also compare the BLSH system with deep
neural networks, a fully-connected (FC) network and a bi-
directional long short-term memory (BiLSTM) network using
varying number of hidden units. We denote Nl and Nh as
the number of hidden layers and units respectively. We also
report the performance of one of the state-of-the-art source
separation models, Conv-TasNet. We use Nr and Nb to denote
the number of repeats and blocks, which defines the internal
separator module’s architecture in Conv-TasNet; we used the
default values as reported in the paper.

First, it is obvious that neural networks with complex
structure (e.g., BiLSTM and Conv-TasNet) easily outperform
BLSH models by all evaluation metrics. We observe that
Conv-TasNet can achieve better performance than the largest
BiLSTM while using significantly smaller architecture (19.94
vs 155.36 MB). Given that these models are either designed
to learn from a long sequence (i.e., BiLSTM) or capable of
processing a relatively long segment of input signal (i.e., 1-
second input for Conv-TasNet), comparison to BLSH’s frame-
by-frame processing results is inadequate. Meanwhile, it also
signifies that the proposed BLSH methods do not scale up
to provide state-of-the-art performance. Our aim in designing
the BLSH method was to maximize its performance in the
hashing-based denoising paradigm.

Given the drastic difference in model sizes, a more reason-
able comparison would be between BLSH and the small neural
network models. For example, BLSH outperforms FC models
of various architectures and performs similarly to BiLSTM
models at least in terms of PESQ. Furthermore, BLSH can
achieve comparable ESTOI scores to small FC models. For
example, the ESTOI score of INmel-SSM-BLSHL=50,ρ=0.01

with 0.18MB of parameters is better than the 2×64 FC model
with 0.28MB (75.78% vs 74.18%).

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2669

TABLE I: Model size, average SDR, SI-SDR, PESQ and ESTOI for various systems evaluated on open mixture set. Hashing-
based KNN systems are reported using optimal L parameters, and their model size is expressed as a sum of reference database
size and model size. FC and BiLSTM models are reported using relevant parameters Nl and Nh, the number of layers and
hidden units respectively, in place of D and L. Similarly Conv-TasNet model is reported using Nr and Nb denoting the number
of repeats and blocks respectively. We used the same parameters as reported in the Conv-TasNet paper. The model sizes are
reported using single-precision (i.e. 32 bits per parameter) for both KNN and deep learning systems.

System Feature ρ L Model Size (MB) SDR (dB) SI-SDR (dB) PESQ ESTOI(%)
Mixture - - - - 0.07 0.00 1.51 81.97

IBM - - - - 20.38 19.98 2.93 94.58

KNN

STFT 0.1 - 503.55 9.77 8.76 1.80 73.74
Mel 0.1 - 125.64 9.61 8.12 1.73 74.60

STFT 0.01 - 50.36 8.65 7.58 1.76 71.38
Mel 0.01 - 16.79 8.36 6.85 1.66 71.20

LSH

STFT 0.1 300 9.20 + 0.62 8.97 7.96 1.79 72.50
Mel 0.1 300 1.53 + 0.15 9.23 7.72 1.73 73.60

STFT 0.01 300 0.92 + 0.62 7.95 6.90 1.76 71.24
Mel 0.01 300 0.15 + 0.15 8.25 6.71 1.68 71.20

BLSH

STFT 0.1 300 9.20 + 0.62 10.18 9.10 1.81 74.98
Mel 0.1 50 1.53 + 0.03 9.47 7.84 1.84 76.58

STFT 0.01 300 0.92 + 0.62 9.31 8.15 1.73 72.56
Mel 0.01 50 0.15 + 0.03 8.92 7.25 1.80 75.78

Nl Nh

FC

STFT

3

1024 12.61 13.10 12.34 1.64 82.32
256 1.58 12.92 12.08 1.74 82.10
64 0.30 12.19 11.28 1.55 80.40
32 0.14 11.74 10.51 1.59 79.64

2

1024 8.41 10.29 9.85 1.68 78.46
256 1.32 10.25 9.71 1.59 77.06
64 0.28 10.01 9.35 1.53 74.53
32 0.14 9.89 9.07 1.48 74.18

BiLSTM 2

1024 155.36 14.74 14.24 1.87 86.74
256 13.68 14.18 13.62 1.86 85.79
64 1.85 13.50 12.91 1.83 84.69
32 0.79 13.06 12.21 1.81 82.89

Nr Nb

Conv-TasNet Raw 3 8 19.94 18.48 18.19 2.45 92.47

From the perspective of a neural network, the BLSH or LSH
methods can be seen as a shallow neural network with only
one hidden layer, whose activations are binarized. Hence, it
is expected that BLSH does not compete with the properly
trained DNNs, especially in terms of SDR or SI-SDR. Still,
we believe that BLSH may work as a reasonable solution.
For example, in comparison to the similar-sized FC networks,
BLSH loses only about 7.6% (INmel-SSM-BLSHL=50,ρ=0.1’s
9.47 dB SDR improvement vs. FC 2×256’s 10.25 dB) or 9.8%
(INmel-SSM-BLSHL=50,ρ=0.01’s 8.92 dB SDR improvement
vs. FC 2 × 32’s 9.89 dB) of the denoising performance.
Nonetheless, we note that model compression techniques can
be applied to the baseline DNN models. Prior works [23]
[67] [68] demonstrated effective model compression methods
can still achieve decent performance with a high compression
ratio. Applying such compression pipelines to our baseline
DNN models would potentially reduce the model sizes down
to similar levels as our BLSH systems while still maintaining
their superior denoising performances.

Considering that these DNN models are operating with
floating-point values, a hardware support that benefits from
bitwise operations can favor BLSH, as it clearly outperforms
the other KNN-based baselines, KNN and LSH. In our current
experimental setup with T = 2453960 frames from the TIMIT
dataset, a INmel-SSM-BLSHL=50,ρ=0.01 would require 50 ×
24539 ≈ 1.2M bitwise operations to process a single frame.

For a 1-second input, or 63 frames, the system would require
∼77M total bitwise operations. In comparison, a small 2× 64
RNN model takes ∼13.7M MACs (multiply-and-accumulate
operations) for a 1-second input. Bitwise operations provide
speedups over floating-point multiplication and accumulation,
and it has been shown to achieve more than ∼50x speedup
[69] when inference is run on CPU. Considering the expedited
inference speed, our INmel-SSM-BLSHL=50,ρ=0.01 system
would potentially run faster than the small RNN model.
However, note that the runtime analysis of a binary operation-
only system highly depends on the hardware setup.

Furthermore, BLSH systems use significantly less compu-
tation during training compared to a small DNN model. Each
projection is a vector of length F , so the total number of train-
able parameters is F×L. For a INmel-SSM-BLSHL=50,ρ=0.01

system, this adds up to 128 × 50 = 6.4K parameters, which
is significantly less than that of a small 2 × 32 FC model
which consists of 34.6K trainable parameters. In addition,
BLSH provides ordered binary representations based on their
contribution, which adds scalability to the system as another
merit.

H. Evaluation on different test conditions

Table II shows the performance of BLSH systems on the
same open mixture set scaled at SNR values -5, 5 and 10
dB, which are different from the noise signals with 0 dB

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2670

TABLE II: SDR, SI-SDR, PESQ and ESTOI for BLSH systems evaluated on open mixture set scaled at -5, 5, and 10 dB SNR
values, different from the 0 dB SNR used to generate the training mixture set.

System Feature ρ L SDR (dB) SI-SDR (dB) PESQ ESTOI(%)
Mixture - - - -4.85 -5.00 1.29 72.12

BLSH

STFT 0.1 300 6.30 5.20 1.47 62.03
Mel 0.1 50 6.42 4.97 1.53 66.86

STFT 0.01 300 5.70 4.48 1.51 61.14
Mel 0.01 50 5.84 4.40 1.48 65.69

Mixture - - - 5.05 5.00 1.81 88.87

BLSH

STFT 0.1 300 13.23 12.16 2.16 83.70
Mel 0.1 50 11.66 9.84 2.14 82.57

STFT 0.01 300 12.38 11.15 2.16 82.03
Mel 0.01 50 11.27 9.37 2.10 82.18

Mixture - - - 10.04 10.00 2.22 93.61

BLSH

STFT 0.1 300 15.50 14.40 2.56 88.47
Mel 0.1 50 13.21 11.25 2.49 86.04

STFT 0.01 300 14.57 13.25 2.56 87.23
Mel 0.01 50 12.84 10.73 2.48 85.87

TABLE III: SDR, SI-SDR, PESQ and ESTOI for BLSH systems evaluated on the VoiceBank-DEMAND dataset [54].

System Feature ρ L SDR (dB) SI-SDR (dB) PESQ ESTOI(%)
Mixture - - - 9.32 8.58 1.99 87.91

BLSH

STFT 0.1 300 8.67 8.83 1.81 76.43
Mel 0.1 50 7.36 7.61 1.89 75.96

STFT 0.01 300 8.06 8.24 1.86 75.88
Mel 0.01 50 6.75 6.99 1.89 75.30

SNR in the training set. Our proposed BLSH method shows
consistent enhancement results in terms of SDR, SI-SDR,
and PESQ under the different SNR conditions. As with the
0 dB noisy mixture set shown in Table I, we again see a
decrease in ESTOI from the enhanced results. A noticeable
difference is that for less noisy environments (5 and 10
dB), INmel-SSM-BLSH does not show better ESTOI than
INSTFT-SSM-BLSH as it did under harsher conditions (-5 and
0 dB).

Table III shows the results from testing our BLSH solu-
tions on unseen speakers and sentences from the Voicebank-
DEMAND dataset [54]. Our proposed system trained on
TIMIT speakers does not perform well on the unseen speaker
condition. INSTFT-SSM-BLSHL=300,ρ=0.1 shows a slight im-
provement of 0.25 dB ∆SI-SDR, but it does not show improve-
ments on other metrics. Other systems are unable to enhance
the noisy mixtures but rather decrease their quality.

Likewise, the proposed BLSH systems are with a limited
generalization power. It can generalize well to unseen noise
levels quite successfully, while on test mixtures of unseen
speakers and noise sources, its performance is limited. The
weakness comes from the small training datasets that are not
representative enough. Also, the compact model size prohibits
the system from learning robust features for general-purpose
speech enhancement.

VI. CONCLUSION

In this paper, we proposed a data-driven hashing algorithm
for the source separation problem using nearest neighbor
search. Under this setup, theK-nearest matching frames in the
dictionary to the test frame are found, and a denoising mask
estimated by the average of associated IBMs. To implement
a lightweight solution, we utilize locality sensitive hash func-
tions to transform the query and database spectra into binary

hash codes. In doing so, memory space is reduced and search
process expedited using bitwise matching operations. We
compress the framework further through a learnable approach
to hashing using the boosting theory. The hash functions
are learned sequentially as linear classifiers in a boosting
manner such that they complement one another. Our learning
objective is set to minimize the discrepancy between the
self-similarity of real valued spectra and hash codes. Hence,
we preserve the original similarity between the hash codes,
so a test query can be quickly matched from the database
through the bitwiseKNN search. Our framework trains binary
classifiers sequentially under a boosting paradigm, culminating
to a better approximation of the original self-similarity matrix
with shorter hash strings. With learned projections and expe-
dited inference using bitwise operations, our method offers a
lightweight solution to the speech enhancement problem.

To study the level of nonlinearity the learned hash codes
achieves, we employed RBF kernels as the self-similarity
targets and taught the weak learners to learn more complex
pairwise relationships. Since the features are expected to
be more discriminant through the nonlinear transformation
implied by the RBF kernel, it is expected that the BLSH
code learned from it may encode a certain level of nonlinear
similarity. While the BLSH algorithm does achieve reasonable
performance by targeting the RBF kernels, we also found that
the data-blind nature of RBF kernel itself has only limited
capacity in capturing perceptual relationship among audio
spectra.

Evaluation results demonstrate that the KNN performance
with the learned hash codes is better than with random
codes from locality sensitive hashing and even raw Fourier
coefficients or mel scaled spectra. This shows that the hash
codes learned through the proposed BLSH method function
as more discriminative features than the real valued features.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2671

Our proposed framework is not comparable to comprehensive
deep learning models in terms of denoising quality, but it
showed promising results compared against a very small neural
network with similar model size to the BLSH dictionary.
In the future we will investigate an extension to temporally
meaningful versions so that the model can handle a sequence
of audio frames. 1

REFERENCES

[1] A. Narayanan and D. L. Wang, “Ideal ratio mask estimation using
deep neural networks for robust speech recognition,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 7092–7096.

[2] D. L. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 10, pp. 1702–1726, 2018.

[3] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for
single-microphone speaker separation,” in Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Conference on, 2017,
pp. 246–250.

[4] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep Clustering:
Discriminative Embeddings for Segmentation and Separation,” in Proc.
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2016.

[5] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invariant
training of deep models for speaker-independent multi-talker speech
separation,” in Proc. of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2017.

[6] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech
separation with utterance-level permutation invariant training of deep
recurrent neural networks,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[7] K. Zhen, M. S. Lee, and M. Kim, “Efficient context aggregation for end-
to-end speech enhancement using a densely connected convolutional and
recurrent network,” arXiv preprint arXiv:1908.06468, 2019.

[8] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–
frequency magnitude masking for speech separation,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp.
1256–1266, 2019.

[9] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: efficient long
sequence modeling for time-domain single-channel speech separation,”
in Proc. of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2020.

[10] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention is all you need in speech separation,” in Proc. of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2021, pp. 21–25.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848–6856.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. of the International Conference on Learning Repre-
sentations (ICLR), 2016.

[15] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” in International Conference
on Learning Representations, 2017. [Online]. Available: https:
//openreview.net/forum?id=rJqFGTslg

[16] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Advances
in Neural Information Processing Systems, 2017, pp. 2181–2191.

1The open-sourced code and sound examples can be found at https://saige.
sice.indiana.edu/research-projects/BWSS-BLSH.

[17] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, “Blockdrop: Dynamic inference paths in residual networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8817–8826.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. of the European Conference on Computer Vision (ECCV), 2016,
pp. 525–542.

[19] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation:
Parameter-free training of multilayer neural networks with continuous or
discrete weights,” in Advances in Neural Information Processing Systems
(NIPS), 2014, pp. 963–971.

[20] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[21] M. Kim and P. Smaragdis, “Bitwise neural networks,” in International
Conference on Machine Learning (ICML) Workshop on Resource-
Efficient Machine Learning, Jul 2015.

[22] ——, “Bitwise neural networks for efficient single-channel source
separation,” in Proc. of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2018.

[23] S. Kim, M. Maity, and M. Kim, “Incremental binarization on recurrent
neural networks for single-channel source separation,” in Proc. of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2019.

[24] D. Wang, “On ideal binary mask as the computational goal of audi-
tory scene analysis,” in Speech separation by humans and machines.
Springer, 2005, pp. 181–197.

[25] P. Indyk and R. Motwani, “Approximate nearest neighbor – towards
removing the curse of dimensionality,” in Proc. of the Annual ACM
Symposium on Theory of Computing (STOC), 1998, pp. 604–613.

[26] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 2004,
pp. 253–262.

[27] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, 2002, pp. 380–388.

[28] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in 2006 47th annual IEEE
symposium on foundations of computer science (FOCS’06). IEEE,
2006, pp. 459–468.

[29] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International
Journal of Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[30] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in neural information processing systems, 2009, pp. 1753–1760.

[31] Z. Li, H. Ning, L. Cao, T. Zhang, Y. Gong, and T. S. Huang, “Learn-
ing to search efficiently in high dimensions,” in Advances in Neural
Information Processing Systems, 2011, pp. 1710–1718.

[32] G. Shakhnarovich, “Learning task-specific similarity,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2005.

[33] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in Computer Vision, IEEE International
Conference on, vol. 3. IEEE Computer Society, 2003, pp. 750–750.

[34] X. Liu, C. Deng, Y. Mu, and Z. Li, “Boosting complementary hash tables
for fast nearest neighbor search,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

[35] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
hashing for approximate nearest neighbor search,” in 2011 International
Conference on Computer Vision. IEEE, 2011, pp. 1631–1638.

[36] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148–156.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[38] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14-1162

[39] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML deep learning workshop, vol. 2,
2015, p. 0.

[40] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a “siamese” time delay neural network,” in Advances
in Neural Information Processing Systems (NIPS), 1994, pp. 737–744.

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, AUGUST 2022 2672

[41] F. R. Bach and M. I. Jordan, “Learning spectral clustering, with appli-
cation to speech separation,” Journal of Machine Learning Research,
vol. 7, no. Oct, pp. 1963–2001, 2006.

[42] M. Cooke and D. P. Ellis, “The auditory organization of speech and other
sources in listeners and computational models,” Speech communication,
vol. 35, no. 3-4, pp. 141–177, 2001.

[43] Y. Luo, Z. Chen, J. R. Hershey, J. Le Roux, and N. Mesgarani, “Deep
clustering and conventional networks for music separation: Stronger
together,” in Proc. of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), March 2017, pp. 61–65.

[44] S. Kim, H. Yang, and M. Kim, “Boosted locality sensitive hashing:
Discriminative binary codes for source separation,” in Proc. of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2020.

[45] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in Neural Information
Processing Systems (NIPS), vol. 14. MIT Press, 2002, pp. 585–591.

[46] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva,
and J. C. Langford, “The Isomap algorithm and topological stability,”
Science, vol. 295, p. 7, January 2002.

[47] S. T. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[48] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for
fast similarity search,” in Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 2010, pp. 18–25.

[49] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for
fast image retrieval,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2064–2072.

[50] J.-P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel methods,”
Kernel methods in computational biology, vol. 47, pp. 35–70, 2004.

[51] Q. Chang, Q. Chen, and X. Wang, “Scaling gaussian rbf kernel width to
improve svm classification,” in 2005 International Conference on Neural
Networks and Brain, vol. 1. IEEE, 2005, pp. 19–22.

[52] Z. Duan, G. J. Mysore, and P. Smaragdis, “Online PLCA for real-
time semi-supervised source separation,” in International Conference
on Latent Variable Analysis and Signal Separation. Springer, 2012,
pp. 34–41.

[53] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments multi-
channel acoustic noise database (demand): A database of multichannel
environmental noise recordings,” in Proceedings of Meetings on Acous-
tics ICA2013, vol. 19, no. 1. ASA, 2013, p. 035081.

[54] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investi-
gating rnn-based speech enhancement methods for noise-robust text-to-
speech.” in SSW, 2016, pp. 146–152.

[55] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE transactions on audio, speech,
and language processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[56] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr–half-baked
or well done?” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
626–630.

[57] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (pesq)-a new method for speech quality as-
sessment of telephone networks and codecs,” in 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[58] J. Jensen and C. H. Taal, “An algorithm for predicting the intelligibility
of speech masked by modulated noise maskers,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 24, no. 11, pp.
2009–2022, 2016.

[59] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[60] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. of the
International Conference on Machine Learning (ICML), 2015.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. of the IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1024–1034.

[62] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of the International Conference on Learning Representations
(ICLR), 2015.

[63] N. Zeghidour and D. Grangier, “Wavesplit: End-to-end speech separation
by speaker clustering,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 2840–2849, 2021.

[64] J. Chen, Q. Mao, and D. Liu, “Dual-path transformer network: Direct
context-aware modeling for end-to-end monaural speech separation,” in
Proc. of the Annual Conference of the International Speech Communi-
cation Association (Interspeech), 2020.

[65] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. of the IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[66] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and
Noise Corpus,” arXiv preprint arXiv:1510.08484, 2015.

[67] Y. Luo, C. Han, and N. Mesgarani, “Ultra-Lightweight Speech Separa-
tion via Group Communication,” in Proc. of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).
IEEE, 2021, pp. 16–20.

[68] K. Tan and D. Wang, “Towards model compression for deep learning
based speech enhancement,” IEEE/ACM transactions on audio, speech,
and language processing, vol. 29, pp. 1785–1794, 2021.

[69] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Enabling ai at
the edge with xnor-networks,” Communications of the ACM, vol. 63,
no. 12, pp. 83–90, 2020.

Sunwoo Kim (Student Member, IEEE) received
the B.S. degree in Engineering Physics from the
University of Illinois at Urbana-Champaign in 2016.
Since 2016, he has been working toward the Ph.D.
degree in Intelligent Systems Engineering at Indiana
University. He works with Professor Minje Kim
at the Signals and Artificial Intelligence Group in
Engineering. His research interests include efficient
and scalable machine learning models for audio
applications.

Minje Kim (Senior Member, IEEE) is Assistant
Professor of Intelligent Systems Engineering at Indi-
ana University. He is also an Amazon Visiting Aca-
demic. He received the Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign in 2016. Before that, he worked as a
researcher at ETRI, Daejeon, Korea from 2006 to
2011. He is a member of the IEEE AASP TC. He
is a recipient of the NSF CAREER Award (2021),
IEEE SPS Best Paper Award (2020), Google and
Starkey’s grants for outstanding student papers at

ICASSP 2013 and 2014, respectively. His research spans machine learning
and audio signal processing.

