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ABSTRACT

Non-negative factorizations of spectra have been a very popular tool
for various audio tasks recently. A long-standing problem with
these methods methods is that they cannot be easily applied on
other kinds of spectral decompositions such as sinusoidal models,
constant-Q transforms, wavelets and reassigned spectra. This is be-
cause with these transforms the frequency and/or time values are
real-valued and not sampled on a regular grid. We therefore cannot
represent them as a matrix that we can later factorize. In this paper
we present a formulation of non-negative matrix factorization that
can be applied on data with real-valued indices, thereby making the
application of this family of methods feasible on a broader family
of time/frequency transforms.

Index Terms— Non-negative Matrix Factorization, Reassign-
ment Method

1. INTRODUCTION

Latent component models on non-negative data have for a while
been a very active area of research and have found numerous appli-
cations in a wide range of domains, from text analysis [1][2] and
recommendation systems [3] to visual scene analysis [4] and mu-
sic transcription [5]. Because many of these techniques trace their
origins back to matrix decompositions, there is often the underlying
assumption that the dimension axes of the input data are indexed
using integers. Such an integer index is usually used to identify a
word, a document, a pixel location, a Fourier frequency bin, etc.,
all of these quantities being discrete and countable. In other words,
the inputs are designed so that they can be represented by a regular
grid, most often represented by a matrix. Although this is a natural
representation for many problems, e.g. a TF-IDF matrix, a spec-
trogram, or a digitized image, it is not a very flexible format for
many continuous signal representations where the sampling or the
representation can be irregular and/or parametric.

In this paper we examine an approach that can analyze such in-
puts while maintaining the structure of typical latent variable mod-
els, i.e. Non-negative Matrix Factorization (NMF). In particular we
will focus on representations which are parametric, that is for each
available data point we will have a real-valued number denoting
its index in every dimension. We will be constraining our analy-
sis to two-dimensional data, thereby directly extending techniques
that operate on matrices (or two-dimensional distributions), but it
is simple to extend this approach to arbitrary dimensions, any of
which can be either discrete or real-valued.

In the remainder of this paper we will introduce the basic
model, a model that corresponds to NMF [6, 7]. We will show how
to estimate such a model’s parameters using data with real-valued
dimensions and we will discuss the extra complications and options
that arise. We will apply this technique to the analysis of time series

and we will show that using such parametric-data approaches we
can discover signal structure that would be otherwise invisible to
traditional latent variable approaches.

2. NMF FOR IRREGULARLY-SAMPLED DATA

2.1. Non-negative matrix factorization

A regular factorization of a time/frequency matrix is defined as:

X ≈W ·H (1)

where X ∈ RM×N
+ is a matrix containing time/frequency en-

ergies, and W = [w1,w2, · · · ,wZ ] ∈ RM×Z
+ and H =

[h>1 ,h
>
2 , · · · ,h>Z ]> ∈ RZ×N

+ represent Z frequency and time
factors, respectively. NMF is a simple and useful factorization that
estimates the two factors using the following iterative process:

Pz =
wz · hz

W ·H ,

wz = (X�Pz) · 1N×1,

hz = 11×M · (X�Pz), (2)

where 1m×n is an m × n matrix of ones, � and [··· ]
[··· ] stand for

element-wise multiplication and division, respectively. We normal-
ize wz by the sum of hz at the end of every iteration in order to get
a spectrum estimate that is unbiased by how much it appears over
time. This also sets the magnitude of W so that we do not have
multiple solutions that transfer energy between the two factors.

The downside of this formulation is that the frequency and time
axes need to be sampled uniformly, meaning that at each time point
we need to have an energy reading for all the frequency values,
and vice versa. Unfortunately for certain types of time/frequency
transforms, such as constant-Q transforms, wavelets and reas-
signed spectrograms, this assumptions do not hold and the resulting
time/frequency energies cannot be represented using a finite-sized
matrix. For such representations we use a different format attaching
to each energy value its exact frequency and time location. In order
to factorize such transforms we need to redefine the factorization
process to accept this new format.

2.2. Reformulation of NMF into a vectorized form

In this section we assume that the transforms that we use are reg-
ularly sampled as above, but we will use a different representa-
tion to allow us to extend this formulation to non-regularly sam-
pled transforms later. Instead of using a matrix X to represent the
time/frequency energies we will use three vectors, f ∈ ZMN×1,
t ∈ ZMN×1, and vec(X) = x ∈ RMN×1

+ , which will respectively
hold the frequency coordinate, the time coordinate, and the energy
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value of each time/frequency point1. The elements of those vectors,
f(i), t(i), and x(i), are indexed by i = {1, 2, · · · ,MN}.

Using the newly introduced formulation we can rewrite the fac-
torization process as follows:

x =

Z∑
z=1

vz � gz, (3)

where now the pair of vectors vz ∈ RMN×1
+ and gz ∈ RMN×1

+

correspond to the values of the factors W and H as they are evalu-
ated at the frequencies and times denoted by f and t. With this, the
iterative multiplicative update rules turn into the following form:

pz =
vz � gz∑Z

z′=1 vz′ � gz′

vz(i) =
∑

∀j:f(j)=f(i)

x(j)pz(j)

gz(i) =
∑

∀j:t(j)=t(i)

x(j)pz(j) (4)

It is easy to show that if the frequency/time indices lie on a regular
integer grids, i.e. f(i) ∈ {1, 2, · · · ,M} and t(i) ∈ {1, 2, · · · , N},
respectively, we will be performing the same operations as in (2).
We can furthermore rewrite (4) to process all components simulta-
neously as:

P =
V �G

(V �G) · 1K×K

V = Df · (P�X)

G = Dt · (P�X) (5)

where the matrices, P, V, and G, contain Z concatenated col-
umn vectors, each of which is for a latent variable z, e.g. P =
[p1,p2, · · · ,pZ ]. Additionally, Df ,Dt ∈ {0, 1}MN×MN denote
two matrices defined as:

Df (i, j) =

{
1, f(i) = f(j)
0, f(i) 6= f(j)

Dt(i, j) =

{
1, t(i) = t(j)
0, t(i) 6= t(j)

(6)

Multiplying with these matrices results in summing over all the ele-
ments that have the same frequency or time value respectively. The
only difference between the formulation in this section and in (2) is
that we will obtain the two factors in a different format so that:

wz(m) = vz(i), ∀i : f(i) = m

hz(n) = gz(i), ∀i : t(i) = n

vec(wz · hz) = vz � gz (7)

where m and n are uniform indices defined in the ranges, {1, 2, · · · ,M}
and {1, 2, · · · , N}, respectively.

2.3. Non-negative non-regular matrix factorization

The more interesting case is the one where the frequency and time
vectors are real-valued and potentially comprised of unique ele-
ments. In this case the summations in (4) become meaningless since

1The vec(·) operator concatenates all the columns of its input matrix to
a single column vector.
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Figure 1: Example of a real-valued-index data set. In (a) we see a set
of data that is not sampled on a grid, as is evident by the unaligned
positioning of the data points. The size of the points indicates the
magnitude of their assigned value x(i). In (b) and (c) we see two
of the implied components that make up the data in (a), and their
smoothed projections on both axes.

they will only sum over single points and will never capture the cor-
relations that form as multiple frequencies get excited at roughly the
same time.

To illustrate such a case let us consider the simple example
as shown in Figure 1 (a), where we have f ∈ RMN×1 and t ∈
RMN×1, i.e. real-valued frequency/time indices. In this case we
need to slightly amend the learning procedure. Previously we used
co-activation information to update the learned components. So, for
example, if for two points x(i) and x(j) we had that f(i) = f(j) =
m and subsequently Df (i, j) = 1, we would perform a sum over
them when we estimated v. In the case above since all the frequen-
cies are real-valued and potentially unique, this summation would
never happen and instead the learned factors v and g would be un-
informative. In order to alleviate that we redefine the two summing
matrices such that Df ,Dt ∈ RMN×MN

+ and:

Df (i, j) = e

−|f(i)−f(j)|2

σ2
f , Dt(i, j) = e

−|t(i)−t(j)|2

σ2t (8)

This means that we still maintain that Df (i, j) = 1, ∀i, j : f(i) =
f(j) and Dt(i, j) = 1,∀i, j : t(i) = t(j), but if we have the
case where two frequency or time labels are close but not exactly
the same we would still sum them, albeit using a lower weight. For
distant points the corresponding values in these matrices will be
very close zero, so no significant summation would take place.

Using this proposed approach, we obtain the results in Figure 1
(b) and (c). The discovered factorization successfully decomposes
the non-uniformly spaced input samples into two intuitively correct
latent components. This kind of input cannot be represented using
matrix forms as the data indices are not integer-valued. Therefore, it
is impossible to otherwise resolve this problem with any latent vari-
able methods such as Probabilistic Latent Semantic Indexing (PLSI)
[1], PLCA [8], Latent Dirichlet Allocation (LDA) [2], or even ma-
trix factorization methods such as Non-negative Matrix Factoriza-
tion (NMF) [6][7] and the Singular Value Decomposition (SVD).

3. EXPERIMENTAL RESULTS

This section highlights the benefits of the proposed model by using
some audio examples with parametric representations that are not
amenable to analysis using matrix-based methods.
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Figure 2: Sinusoidal tracking example. (a) Zoomed-in STFT of a
musical sound and estimated sinusoid components (yellow lines).
(b) the frequency and intensity of sinusoids are represented with
dots, where the size of the dot represents the intensity. Note that the
frequency position of the dots is real-valued, but the time is sampled
on a regular grid therefore is integer-valued.

3.1. An example with non-regular input along one-dimension

Suppose that we observe a non-regular input stream with a regular
time interval. For instance, Figure 2 (a) is the result of a sinusoidal
component estimation at every time frame of a series of short-time
Fourier transforms (STFT) of a sound. We cannot represent that
data using a matrix representation since each sinusoid is positioned
on the vertical axis using a real-valued frequency estimate that will
not necessarily line up with the integer-valued Fourier bins. In addi-
tion to that we have a different number of the sinusoids at different
time frames which also makes it hard to force them into a matrix
representation.

The sound that is being analyzed consists of two successive
bass guitar notes at a low frequency range (around 41Hz), with
a very small frequency difference between them (about 0.17 of a
semitone). As is well known in the area of music analysis, if we
decompose the STFT data of such a sound using an algorithm like
PLSI, PLCA or NMF and request two components, we should see
that each component will correspond to one of the notes played [9].
As we will see however, this particular sound is problematic with
known techniques. Because of the low frequencies involved, we
have to use a large Fourier analysis window (8192pt = 0.186 sec in
this case) to obtain a high frequency resolution so that the two notes
do not have an identical looking representation. Using a hop size
of 50% and a Hann window we applied NMF with two components
on the magnitude STFT of this sound and we decomposed it to two
elements as shown in Figure 3. Upon examination we see that both
components average out similar characteristics from both notes and
fail to properly segment the input. This is because even with such
a long analysis window the magnitude spectra of the two notes are
not sufficiently different to be recognized as two components.

We now repeat this experiment, but instead of using the magni-
tude STFT data we use the sinusoidal analysis data from Figure 2
(b), which is real-valued on the frequency axis. This will provide
the extra frequency resolution we need, but will necessitate that we
use the proposed algorithm to deal with the non-regular nature of
our data. The decomposition results for two components are shown
in Figure 3 (c) and (d), where bigger dots indicate more energy. We
can see that this algorithm provides the desired decomposition, with
each note being a discovered component. We note here that the bet-
ter results are not a side effect of the algorithm, but rather of a better
data representation that suits this problem. This algorithm only be-
comes necessary because this representation is not analyzable by
other known methods.
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Figure 3: Separation results of regular and non-regular NMF. (a)
First component estimate from regular NMF. (b) Second component
estimate from regular NMF. (c) First component using non-regular
NMF. (d) Second component using non-regular NMF.

3.2. Reassigned spectrogram: non-regular along both axes

In this section we will show an experiment where both axes of our
input are real-valued. We will do so by making use of reassigned
spectrograms. The reassignment method [10] provides an alterna-
tive representation of magnitude spectrograms by estimating a more
accurate position of each spectrogram value and reassigning that
value to a new more accurate time/frequency position. It basically
breaks the grid structure by nudging each time/frequency bin out of
an integer-valued location. Because of that nudging, the resulting
spectrogram can exhibit infinite resolution in both frequency and
time domains. This results a much more accurate time/frequency
representation of a time series, but the data is now in a form that is
very hard to decompose using traditional techniques.

To motivate using this representation, we use the first few sec-
onds of the recording “Donna Lee” by Jaco Pastorius, which is a
fast-paced bass solo with some percussion in the background. The
played notes are {G3,A3,G3,E3,D3,D[

3} and there are two dif-
ferent conga hits, one simultaneously with the third note and one
with the fifth. Because of the low bass notes we would require high
frequency resolution to be able to tell the notes part, but the fast
note successions and percussion necessitate high temporal resolu-
tion. If we analyze this data using a traditional STFT we obtain the
two representations shown at the top of Figure 4. We can see that
for a short enough FFT size that provides good temporal resolution,
the spectra of the bass notes are virtually indistinguishable, whereas
for a large enough window where the note spectra become distinct
the timing information is severely smeared. For any combination of
STFT parameters it is impossible to obtain an NMF-style factoriza-
tion that discovers the bass notes and the percussion hits. Alterna-
tively we can use a reassigned spectrum as shown at the bottom of
in Figure 4. In that representation it is easier to see the bass notes,
as well as the two percussion hits. In Figure 5 we show the reas-
signed spectrogram, with each point having been labeled according
to which component is used to reconstruct it. As we would ex-
pect from an NMF-style analysis, the unique spectra of the different
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Figure 4: Comparison of a short-window STFT, a long-window
STFT, and a reassigned spectrum. For the latter, the size of the
points represents the amount of energy. For legibility we stretched
the frequency axis to align with the Mel scale. Unlike the tradi-
tional spectrograms, this stretching is easy to do without any loss
of information because of the parametric format of the reassigned
spectra.

notes and the two percussion sounds should emerge as components.
Although this is impossible to achieve using a standard STFT and
NMF analysis due to time/frequency tradeoff constraints, using the
proposed approach we successfully discover all the expected ele-
ments, despite their very close overlap in time and frequency.

3.3. Implementation Notes

There are a couple of practical issues that we address in this section
regarding the use of kernels. As should be evident variance of the
Gaussian kernels Df and Dt that we use can have a dramatic effect
on the results. A very small variance will not fill the space enough to
learn any structure, whereas too large a variance will blur the results.
In the above cases we have a clear sense of the approximate spacing
between our data so that we can make a good guess of the proper
values, this might not always be the case though. An additional
problem is that of computational complexity. Employing the two
kernel matrices can be very cumbersome when the number of data
samples is in the tens of thousands. To alleviate that we clip small
values of Df and Dt to zero. By doing so we can use sparse matrix
routines which accelerate computation significantly and also reduce
memory footprint.

4. CONCLUSIONS

In this paper we presented a latent component model that operates
on inputs that do not lie on a regular grid. We formulated this as
a vectorized form of matrix decomposition problem and derived a
multiplicative update rules that are analogous to those of NMF. By
running experiments on audio data representations that are paramet-
ric, we have shown that this algorithm performs as expected and
is able to correctly analyze such irregular inputs that gridded-data
techniques are not able to.
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Figure 5: The reassigned spectrogram in Figure 4, with each point
labelled by its component association, as denoted by both shape and
color. In order to improve legibility not all input points are plotted.
One can clearly see that the input is properly segmented according
to the notes and the percussion hits.
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